

Diameter

the distance across a circle, measured through its center; or the line segment that joins two points on the circle and passes through the center.

Radius

the distance or line segment from the center of a circle to any point on the circle.

Chord(s)

a line segment that joins two points on a circle.

Arc

A segment of the circumference of a circle.

Minor Arc

The shorter of two arcs between two points on a circle. For example: \overrightarrow{AB}

Tangent

a line that intersects a circle at only one point.

Point of Tangency

the point where a tangent intersects a circle

Central Angle

An angle whose arms are radii of a circle.

Inscribed Angle

An angle in a circle with its vertex and endpoints of its arms on the circle.

For example, \angle PQR

Section 8.1 Properties of Tangents to a Circle

Tangent-Radius Property

A tangent to a circle is perpendicular to the radius at the point of tangency.

$$\angle APO = \angle BPO = 90^{\circ}$$

Example Problems

A) Point O is the center of a circle and AB is tangent to the circle. In OAB, \angle AOB = 55°. Determine the measure of \angle OBA.

Since
$$\angle A = 90^{\circ}$$
 and $\angle 0 = 55^{\circ}$

Then
$$90 + 55 = 145$$

The three angles in a triangle add to 180° . So $\angle x = 180 - 145 = 35^{\circ}$.

Try to find the missing angles in the following diagrams

A) B)

$$x = 48^{\circ}$$
 $x = 76^{\circ}$

Application Example

Since AC is a tangent ...
$$\angle$$
 BDA = \angle BDC = 90°

Find x

Find y

$$y + 90 + 35 = 180$$

 $y + 125 = 180$
 $y + 125 - 125 = 180 - 125$
 $y = 55^{\circ}$

Using the Pythagorean Theorem in a Circle

1.

Since BM is a tangent we know that \angle OBM = 90° .

$$a^{2} + b^{2} = c^{2}$$

 $8^{2} + b^{2} = 10^{2}$
 $64 + b^{2} = 100$
 $b^{2} = 100 - 64$
 $b^{2} = 36$
 $b = \sqrt{36}$
 $b = 6$ cm

Try this one!

2.

Since BM is a tangent we know that \angle OBM = 90° .

$$a^{2} + b^{2} = c^{2}$$

 $12^{2} + b^{2} = 16^{2}$
 $144 + b^{2} = 256$
 $b^{2} = 256 - 144$
 $b^{2} = 112$
 $b = \sqrt{112}$
 $b = 10.6$ cm

3. An airplane is cruising at an altitude of 9000m. A cross section of the earth is a circle with a radius approximately 6400km. A passenger wonders how far she is from a point H on the horizon she sees outside the window. Calculate the distance to the nearest kilometer.

$$a^{2} + b^{2} = c^{2}$$

 $d^{2} + 6400^{2} = 6409^{2}$
 $d^{2} + 40960000 = 41075281$
 $d^{2} = 41075281 - 40960000$
 $d^{2} = 115281$
 $d = \sqrt{115281}$
 $d = 339.5 \text{ km}$

8.2 Properties of Chords in a Circle

In any circle with center O and chord AB:

- If OC bisects AB, then OC [⊥] AB
- If $OC \perp AB$, then AC = CB
- The perpendicular bisector of AB goes through the center O.

Remember:

Perpendicular means there is a 90° angle.

Bisector means it is divided into 2 equal parts

If AC = 10cm, then BC =10cm

Example #1

O is the center of the circle. Find the length of chord AB.

Solution: Use the Pythagorean Theorem to solve for BC

$$a^{2} + b^{2} = c^{2}$$

 $6^{2} + BC^{2} = 10^{2}$
 $36 + BC^{2} = 100$
 $BC^{2} = 100 - 36$
 $b^{2} = 64$
 $BC = \sqrt{64}$
 $BC = 8 \text{ cm}$

AC = BC = 8cmSo the length of AB is 2 x 8cm = 16cm

Example # 2

The diameter of a circle is 18cm. A chord JK is 5cm from the center. Find the length of the chord.

$$a^{2} + b^{2} = c^{2}$$

 $5^{2} + b^{2} = 9^{2}$
 $25 + b^{2} = 81$
 $b^{2} = 81 - 25$
 $b^{2} = 56$
 $b = \sqrt{56}$
 $b = 7.5$ cm

If b = 7.5 cm, then the chord JK is 2×7.5 cm = 15cm

Example # 3 A chord MN is 24cm. The radius of a circle is 20cm. Find the length of x.

Since the chord is 24cm, half it is 12cm. Use the Pythagorean Theorem to find the missing side of the triangle.

$$a^{2} + b^{2} = c^{2}$$
 $12^{2} + b^{2} = 20^{2}$
 $144 + b^{2} = 400$
 $b^{2} = 400 - 144$
 $b^{2} = 256$
 $b = \sqrt{256}$
 $b = 16$ cm

Radius is 20 cm ALL the way around the circle! The length of x must be 20 cm - 16 cm = 4 cm

Example # 4:

Finding Angle Measurements x , y and z.

Solution

Since OC bisects chord AB, OC is perpendicular to AB. Therefore, $x = 90^{\circ}$

The 3 angles in a triangle must add up to 180° . y + 30 + 90 = 180 y + 120 = 180 y + 120 - 120 = 180 - 120 $y = 60^{\circ}$

Since radii are equal (OA = OB) and \triangle OAB is isosceles, z = 30°.

Remember that in an isosceles triangle the 2 base angles are equal.

Try These

A). B).

$$x = 90^{\circ} \text{ and } y = 50^{\circ}$$

$$x = 90^{\circ}$$
 , $y = 35^{\circ}$ and $z = 55^{\circ}$

Section 8.3 Properties of Angles in a Circle

Central Angle and Inscribed Angle Property

The measure of a central angle is twice the measure of an inscribed angle subtended by the same arc.

Examples

Inscribed Angles Property

Inscribed angles subtended by the same arc are equal.

Examples #1

 \angle ACB and \angle ADB are inscribed angles subtended by the same arc AB. So, \angle ACB = \angle ADB. $x = 22^{\circ}$.

Central angle \angle AOB and inscribed angle \angle ACB are both subtended by arc AB. \angle AOB = 2 × \angle ACB y = 2 × 22 y = 44⁰

#2

 \angle ACB and \angle ADB are inscribed angles subtended by the same arc AB. So, \angle ACB = \angle ADB. $x = 14^{\circ}$.

Central angle \angle AOB and inscribed angle \angle ACB are both subtended by arc AB. \angle AOB = 2 × \angle ACB y = 2 × 14 y = 28⁰

#3

Since both inscribed angles are subtended from the same arc as the central angle

$$\angle ACB = \angle ADB = \frac{1}{2} \angle AOB.$$

 $y = x = \frac{1}{2} (50^{\circ})$
 $y = x = 25^{\circ}$

Angles in a Semicircle Property

Inscribed angles subtended by a semicircle (half the circle) are right angles. This means these angles use the diameter.

Example #1 Find the missing angle measures.

 \angle MIN is an inscribed angle subtended by a semicircle. So, $x = 90^{\circ}$.

Since three angles in a triangle add to 180⁰,

$$y + 90 + 40 = 180$$

 $y + 130 = 180$
 $y + 130 - 130 = 180 - 130$
 $y = 50^{\circ}$

Example # 2 - Try this one!

 \angle MIN is an inscribed angle subtended by a semicircle. So, $x = 90^{\circ}$.

Since three angles in a triangle add to 180⁰,

$$y + 90 + 60 = 180$$

 $y + 150 = 180$
 $y + 150 - 150 = 180 - 150$
 $y = 30^{\circ}$