Unit 8: Circle Geometry

Radius

the distance or line segment from the center of a circle to any point on the circle.

Chord(s)

a line segment that joins two points on a circle.

Arc
A segment of the circumference of a circle.
Minor Arc
The shorter of two arcs between two points on a circle.
For example: AB

Point of Tangency

the point where a tangent intersects a circle

Central Angle

Inscribed Angle

An angle in a circle with its vertex and endpoints of its arms on the circle.

For example, $\angle \mathrm{PQR}$

Section 8.1 Properties of Tangents to a Circle

Tangent-Radius Property

A tangent to a circle is perpendicular to the radius at the point of tangency. $\angle \mathrm{APO}=\angle \mathrm{BPO}=90^{\circ}$

Example Problems

A) Point O is the center of a circle and $A B$ is tangent to the circle. In $O A B$, $\angle A O B=55^{\circ}$. Determine the measure of $\angle O B A$.

Since $\angle A=90^{\circ}$ and $\angle 0=55^{\circ}$
Then $90+55=145$
The three angles in a triangle add to 180°. So $\angle x=180-$ $145=35^{\circ}$.

Try to find the missing angles in the following diagrams
A)

$$
x=48^{\circ}
$$

Application Example

B)

$$
x=76^{\circ}
$$

Since $A C$ is a tangent ...

$$
\angle \mathrm{BDA}=\angle \mathrm{BDC}=90^{\circ}
$$

Find x

$$
\begin{aligned}
& x+90+57=180 \\
& x+147=180 \\
& x+147-147=180-147 \\
& x=33^{\circ}
\end{aligned}
$$

Find y

$$
\begin{aligned}
& y+90+35=180 \\
& y+125=180 \\
& y+125-125=180-125 \\
& y=55^{\circ}
\end{aligned}
$$

Using the Pythagorean Theorem in a Circle
1.

Since BM is a tangent we know that $\angle \mathrm{OBM}=90^{\circ}$.

$a^{2}+b^{2}=c^{2}$
$8^{2}+b^{2}=10^{2}$
$64+b^{2}=100$
$b^{2}=100-64$
$b^{2}=36$
$b=\sqrt{ } 36$
$\mathrm{b}=6 \mathrm{~cm}$

Try this one!
2.

Since BM is a tangent we know that $\angle \mathrm{OBM}=90^{\circ}$.
$a^{2}+b^{2}=c^{2}$
$12^{2}+b^{2}=16^{2}$
$144+b^{2}=256$
$b^{2}=256-144$
$b^{2}=112$
$b=\sqrt{ } 112$
$\mathrm{b}=10.6 \mathrm{~cm}$
3. An airplane is cruising at an altitude of 9000 m . A cross section of the earth is a circle with a radius approximately 6400 km . A passenger wonders how far she is from a point H on the horizon she sees outside the window. Calculate the distance to the nearest kilometer.

8.2 Properties of Chords in a Circle

In any circle with center O and chord $A B$:

- If $O C$ bisects $A B$, then $O C \perp A B$
- If $O C \perp A B$, then $A C=C B$
- The perpendicular bisector of $A B$ goes through the center O.

Remember:
Perpendicular means there is a 90° angle.

Bisector means it is divided into 2 equal parts

If $A C=10 \mathrm{~cm}$, then $B C=10 \mathrm{~cm}$

Example \# 1

O is the center of the circle. Find the length of chord $A B$.

Solution: Use the Pythagorean Theorem to solve for BC

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 6^{2}+B C^{2}=10^{2} \\
& 36+B C^{2}=100 \\
& B C^{2}=100-36 \\
& b^{2}=64 \\
& B C=\sqrt{64} \\
& B C=8 \mathrm{~cm}
\end{aligned}
$$

$A C=B C=8 \mathrm{~cm}$
So the length of $A B$ is $2 \times 8 \mathrm{~cm}=16 \mathrm{~cm}$

Example \# 2

The diameter of a circle is 18 cm . A chord JK is 5 cm from the center. Find the length of the chord.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 5^{2}+b^{2}=9^{2} \\
& 25+b^{2}=81 \\
& b^{2}=81-25 \\
& b^{2}=56 \\
& b=\sqrt{56} \\
& b=7.5 \mathrm{~cm}
\end{aligned}
$$

If $\mathrm{b}=7.5 \mathrm{~cm}$, then the chord JK is $2 \times 7.5 \mathrm{~cm}=$ 15 cm

Example \# 3 A chord $M N$ is 24 cm . The radius of a circle is 20 cm . Find the length of x.

Since the chord is 24 cm , half it is 12 cm . Use the Pythagorean Theorem to find the missing side of the triangle.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 12^{2}+b^{2}=20^{2} \\
& 144+b^{2}=400 \\
& b^{2}=400-144 \\
& b^{2}=256 \\
& b=\sqrt{256} \\
& h=16 \mathrm{~cm}
\end{aligned}
$$

Radius is 20 cm ALL the way around the circle! The length of x must be $20 \mathrm{~cm}-16 \mathrm{~cm}=4 \mathrm{~cm}$

Example \# 4:

Finding Angle Measurements x, y and z.

Solution

Since $O C$ bisects chord $A B, O C$ is perpendicular to $A B$. Therefore, $x=90^{\circ}$
The 3 angles in a triangle must add up to $180^{\circ} . \quad y+30+90=180$
$y+120=180$
$y+120-120=180-120$
$y=60^{\circ}$
Since radii are equal $(O A=O B)$ and $\triangle O A B$ is isosceles, $z=30^{\circ}$.
Remember that in an isosceles triangle the 2 base angles are equal.

Try These
A).
B).

$$
x=90^{\circ} \text { and } y=50^{\circ}
$$

$$
x=90^{\circ}, y=35^{\circ} \text { and } z=55^{\circ}
$$

Section 8.3 Properties of Angles in a Circle

Central Angle and Inscribed Angle Property
The measure of a central angle is twice the measure of an inscribed angle subtended by the same arc.

Examples

\#1

\#2

$$
x=35^{\circ}
$$

\#3

$$
y=36^{\circ}
$$

Inscribed Angles Property

Inscribed angles subtended by the same arc are equal.

Examples \#1

$\angle A C B$ and $\angle A D B$ are inscribed angles subtended by the same arc AB. So, $\angle A C B=\angle A D B . \quad x=22^{\circ}$.

Central angle $\angle A O B$ and inscribed angle $\angle A C B$ are both subtended by arc $A B$. $\angle A O B=2 \times \angle A C B$ $y=2 \times 22 \quad y=44^{0}$
\#2

$\angle A C B$ and $\angle A D B$ are inscribed angles subtended by the same arc AB. So, $\angle A C B=\angle A D B . \quad x=14^{\circ}$.

Central angle $\angle A O B$ and inscribed angle $\angle A C B$ are both subtended by arc $A B$. $\angle A O B=2 \times \angle A C B$ $y=2 \times 14 \quad y=28^{\circ}$
\#3

Since both inscribed angles are subtended from the same arc as the central angle

$$
\begin{aligned}
& \angle A C B=\angle A D B=\frac{1}{2} \angle A O B . \\
& y=x=\frac{1}{2}\left(50^{\circ}\right)
\end{aligned}
$$

$$
y=x=25^{\circ}
$$

Angles in a Semicircle Property

Inscribed angles subtended by a semicircle (half the circle) are right angles. This means these angles use the diameter.

Example \#1 Find the missing angle measures.

$\angle \mathrm{MIN}$ is an inscribed angle subtended by a semicircle. So, $x=90^{\circ}$.

Since three angles in a triangle add to 180°,
$y+90+40=180$
$y+130=180$
$y+130-130=180-130$
$y=50^{\circ}$

Example \# 2-Try this one!

LMIN is an inscribed angle subtended by a semicircle.
So, $x=90^{\circ}$.
Since three angles in a triangle add to 180°,
$y+90+60=180$
$y+150=180$
$y+150-150=180-150$
$y=30^{\circ}$

