Science 9 Unit 3: Environmental Chemistry Reading Logs – SCIENCE in ACTION

Topic #	Topic Title	Science in	Due	Complete
		Action Page		✓ or X
	Chemicals in the			
1.1	Environment	182 - 190		
1.2	Acids and Bases	191 - 195		
	Common Substances			
1.3	Essential to Living Things	196 - 203		
	How Organisms Take in			
1.4	Substances	204 - 211		
2.1	Monitoring Water Quality	212 - 224		
2.2	Monitoring Air Quality	225 - 228		
2.3	Monitoring the Atmosphere	229 - 235		
3.1	Transport of Materials	237 - 242		
	through Air, Soil and Water			
	Changing the Concentration			
3.2	of Harmful Chemicals in the Environment	243 - 247		
3.3	Hazardous Chemicals Affect Living Things	248 - 252		
3.4	Hazardous Household Chemicals	253 - 259		
	Review	260 - 269		

Note – textbook pages correspond to Science in Action Text, a full PDF copy of this text is available on D2L.

Environmental Chemistry

Section 1: The environment is made up of chemicals that can support or harm living things

Chemicals in the	environment		p.182-183
Chemical	Chemical Nomenclature	Possible Source	Role in Environment
Water			
Carbon Dioxide			
Oxygen			
Sulfur Dioxide			
Ammonia			
Nitrogen			
Ad	d arrows and fill in the		gen cycle: p.184-185

- Define NITROGEN FIXATION and explain why it is an essential process.

- What **biotic** factor is responsible for nitrogen fixation and what **abiotic** factors perform the process?

- What factors can change the amount of nitrogen that is in the soil?

:	Explain the following statement: "We naturally and unnaturally affect the environment's chemicals "
:	p.185
:	
:	
:	

Agricultural Activities p.186-187					
	Definition	Positive	Negative		
Fertilizers					
Pesticides					

Industrial Processes (P. 190)

Industrial processes such as electrical power generation, mineral processing and fertilizer production may release chemicals in to the air. A common industrial process in Alberta is natural gas processing.

What is natural gas composed of?

How is natural gas processed?

What is SOUR GAS and how does it relate to Natural Gas?

Complete the pH scale below with at least 6 of the common values and substances as shown on p. 191.

What chemicals are the ingredients of acid rain and where do they come from?

Negative consequences of acid rain are:

How are acidic lakes sometimes treated?

Name and describe how the two methods for measuring pH work:

Section 1.3: Common Substances Essential to Living Things

(\frown	Essential Elements for Living Things p.196
		Our bodies need elements for normal growth.
r		3 most common are:
NUTRIENTS	p.197	

Define:

<u>Nutrients:</u>	
<u>Macronutrients</u> :	Micronutrients:

Nutrient	Importance in Plants	Importance in Humans
Nitrogen (N)		
Phosphorus (P)		
Potassium (K)		
Magnesium (Mg)		
Calcium (Ca)		
Sulfur (S)		

ORGANIC AND INORGANIC ELEMENTS

What is the difference between an organic and an inorganic element?

Types of Organic Elements p.199, 202-203

Draw it!	What are they?	Are found in:
Carbohydrates		
Lipids		
Proteins and		
Amino Acids		
Nucleic Acids		

Define Optimum Amounts and give an example: p.198

How can you tell if a plant or animal is NOT receiving optimum amounts of a nutrient?

8

Section 1.4: How Organisms Take in Substances p. 204-206

ANIMALS Consumers rely on _____ Plants rely on _____ compounds compounds made by _____ for which they turn into _____ compounds. Uptake of Materials by Living Things PASSIVE UPTAKE: **INGESTION:** Diffusion: **MECHANICAL DIGESTION:** Osmosis CHEMICAL DIGESTION: Hydrolysis: ACTIVE UPTAKE

Active Transport:

Nutrients are transported through

the body by

 $\mathrm{C_{12}H_{22}O_{11(aq)}} \ + \ \mathrm{H_2O}_{(l)} \longrightarrow \ 2 \ \mathrm{C_6H_{12}O_{6(aq)}}$ maltose + water ----> glucose

PLANTS

their energy, growth and repair.

Adaptations for Obtaining Nutrients In Various Environments				
Environment	Adaptation:	Substrate: define		
Ocean				
Barren Environments				
Food		Provide examples of potential substrates in the environments listed on the left:		
Deserts				
Grasslands				
Tundra				

O Section 2 MONITORING:	: The quantity of chemicals ir	n the environment can be m	onitored. P.212	
	2.1 Monitorin	g Water Quality 🖥		
Explain the foll	owing statement: "Clear water d	oes not always indicate high w	ater quality." p.213	
Water quality is determined according	to			
5 Categories of Water Use are	2	4	F	
1. 2.	5.	4.	З.	
	Biological Indicators (re	emember River Watch???)		
How do the following determine Microbes:	water quality? p.214	Aquatic Inver	ebrates:	

Chemical Factors that Affect Organisms p.215 – 222 (REVIEW and UNDERSTAND PPM on page 216)					
Dissolved Oxygen	Acidity	Pesticides	Heavy Metals	Nutrients	Salts
Depends on	At what pH do fish begin to disappear?	How do pesticides affect water quality?	Heavy metals are	High levels of phosphorus and nitrogen impact aquatic environments by	such as sodium chloride and magnesium sulfate
-	Areas most affected by changes in acidity:	How can only small amounts create toxic substances?	Negative consequences:		
Acceptable level for most living things is ppm.	Spring acid shock is				
		Measuring Chemicals a	nd Toxicity p.216, 221		
The concentration of chemicals in the environment is usually measured in which means Toxicity: LD ₅₀ means					

2.2 Monitoring Air Quality p.225

Air Composition:

Air Quality is determined by:

Chemical Monitored for Air Quality					
	Effects	Formation	Source	Reduction	
Sulfur Dioxide p.225					
Nitrogen Oxides p.226					
Carbon Monoxide p.227					
Ground- Level Ozone p.227					

2.3 Monitoring Atmosphere Quality p.229-230

Greenhouse Effect:

CO ₂ is not considered a	Greenhouse gasses are	Enhanced greenhouse	Global Warming is
toxic pollutant because	those that	effect is caused by	
but it is a greenhouse			
gas.			

Ozone: p.232

Purpose of the ozone layer is	Consequences of a thinning ozone layer are	The cause of a thinning ozone layer is	The ozone layer is monitored in the following ways

The Greenhouse Effect: When radiant energy from the sun reaches Earth's surface, much of it is reflected back into space. But some of this energy is trapped near Earth's surface by a layer of gasses that act like the glass in a green house.

Section 3: Potentially <u>harmful substances</u> are <u>spread</u> and <u>concentrated</u> in the environment in various ways

¥		
3.1 Transport of Materials Through Air, Soil and Water		
AIR → 3 Stages: p.237	How are the directions and distance travelled by airborne chemicals determined?	
1.	-	
2.	-	
3.	-	
GROUNDWATER (define) p.239:	Characteristics that prevent the dispersal of chemicals	
Water table:		
What types of substances contaminate ground water?	What factors affect water movement? -	

SURFACE WATER p.241 Contaminant sources:	Properties of "problem" contaminants:
-	
-	
Become a problem when	Importance of monitoring:
SOIL p.241	
Water that soaks in to the soil and moves downward	What properties of soil make it more susceptible to contamination?
is called	

3.2 Changing Concentration

Describe how the various techniques listed below can be used to change the concentration of pollutants in the environment.

p.243-244

Dispersion:	Dilution:

Biodegradation:

- Role of Bacteria

- Factors Affecting Biodegradation p.246

<u>Affect Living Things:</u> Biomagnification: p.248	3.3	Hazardous Chemicals
Oil Spills impact on p.250-252 Environment:		People:
Plants and Animals:		Clean-up:
3.4 Household Chemicals p.253-257 Examples:		
Labeling – WHMIS		MSDS:
New Product Registration:		Transporting:
Disposal:		Hazardous Waste Collection Sites: