Name \qquad Date \qquad

Master 1.16

 Extra Practice 1
Lesson 1.1: Square Roots of Perfect Squares

1. Use each diagram to determine the value of the square root.
a) $\sqrt{\frac{1}{9}}$
b) $\sqrt{0.16}$

2. Which numbers below are perfect squares? How do you know?
a) $\frac{25}{121}$
b) 2.89
c) $\frac{2}{50}$
d) 0.004
3. Calculate the number whose square root is:
a) $\frac{5}{7}$
b) 1.6
c) 0.92
d) $\frac{10}{9}$
4. Determine the value of each square root.
a) $\sqrt{\frac{225}{49}}$
b) $\sqrt{\frac{9}{25}}$
c) $\sqrt{\frac{400}{324}}$
d) $\sqrt{\frac{8}{98}}$
5. Determine the value of each square root.
a) $\sqrt{6.76}$
b) $\sqrt{327.61}$
c) $\sqrt{0.0025}$
d) $\sqrt{0.0225}$
6. The area of a square garden is $12.25 \mathrm{~m}^{2}$.
a) Determine the perimeter of the garden.
b) The owner decides to put a gravel pathway around the garden.

This reduces the area of the garden by $4.96 \mathrm{~m}^{2}$.
What is the new side length of the garden?

Name \qquad Date \qquad

Extra Practice 2

Lesson 1.2: Square Roots of Non-Perfect Squares

1. Which numbers below are perfect squares? How do you know?
a) $\sqrt{\frac{16}{53}}$
b) $\sqrt{\frac{1}{25}}$
c) $\sqrt{0.009}$
d) $\sqrt{10.24}$
2. State the benchmark(s) you could use to approximate each square root.
a) $\sqrt{29.4}$
b) $\sqrt{0.41}$
c) $\sqrt{\frac{18}{37}}$
d) $\sqrt{\frac{14}{3}}$
3. Use benchmarks to approximate each square root to the nearest tenth.
a) $\sqrt{11.6}$
b) $\sqrt{0.39}$
c) $\sqrt{\frac{21}{2}}$
d) $\sqrt{\frac{11}{52}}$
4. Suppose the $\sqrt{ }$ key on your calculator is broken. Explain how you could use your calculator to estimate $\sqrt{58.6}$ to the nearest tenth.
5. Use a calculator to approximate each square root to the nearest tenth.
a) $\sqrt{14.29}$
b) $\sqrt{\frac{15}{8}}$
c) $\sqrt{\frac{2}{19}}$
d) $\sqrt{0.7}$
6. In each triangle, determine the unknown length to the nearest tenth of a unit where necessary.
a)

b)

