What You'II Learn

- Use powers to show repeated multiplication.
- Evaluate powers with exponent 0.
- Write numbers using powers of 10 .
- Use the order of operations with exponents.
- Use the exponent laws to simplify and evaluate expressions.

Why It's Important

Powers are used by

- lab technicians, when they interpret a patient's test results
- reporters, when they write large numbers in a news story

Key Words

integer	exponent
opposite	squared
positive	cubed
negative	standard form
factor	product
power	quotient
base	

1.1 Skill Builder

Side Lengths and Areas of Squares

The side length and area of a square are related.

- The area is the square of the side length.

$$
\begin{aligned}
\text { Area } & =(\text { Length })^{2} \\
& =5^{2} \\
& =5 \times 5 \\
& =25
\end{aligned}
$$

The area is 25 square units.

- The side length is the square root of the area.
Area $=25$ square units. Length $=\sqrt{\text { Area }}$

$=\sqrt{25}$
$=\sqrt{5 \times 5}$
$=5$

The side length is 5 units.

Check

1. Which square and square root are modelled by each diagram?

Whole Number Squares and Square Roots

- The square of a number is .the number multiplied by itself.
- A square root of a number is one of 2 equal factors of the number.
- Squaring and taking a square root are inverse operations.

$$
\begin{aligned}
5^{2} & =5 \times 5 \\
& =25 \\
\sqrt{25} & =\sqrt{5 \times 5} \\
& =5 \\
5^{2} & =25 \text { and } \sqrt{25}=5
\end{aligned}
$$

Check

1. Complete each sentence.
a) $4^{2}=16$, so $\sqrt{16}=$ \qquad b) $12^{2}=$ \qquad so $\sqrt{\square}=$ \qquad
c) $\sqrt{25}=$ \qquad , since \qquad $=25$
d) $\sqrt{100}=$ \qquad since \qquad $=$ \qquad

Perfect Squares

A number is a perfect square if it is the product of
2 equal factors.
25 is a perfect square because $25=5 \times 5$.
24 is a non-perfect square. It is not the product of
2 equal factors.

Check

1. Complete each sentence.

First 12 Whole-Number Perfect Squares			
Perfect Square	Square Root	Perfect Square	Square Root
$1^{2}=1 \times 1=1$	$\sqrt{1}=1$	$7^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$2^{2}=2 \times 2=4$	$\sqrt{4}=2$	$8^{2}=\ldots \times \ldots$	$\sqrt{\square}=$
$3^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$9^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$4^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$10^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$5^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$11^{2}=\ldots \times \ldots$	$\sqrt{\square}=$
$6^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$12^{2}={ }^{-} \times$	$\sqrt{\square}=$

1.1 Square Roots of Perfect Squares

FOCUS Find the square roots of decimals and fractions that are perfect squares.

The square of a fraction or decimal is the number multiplied by itself.
$\left(\frac{2}{3}\right)^{2}=\frac{2}{3} \times \frac{2}{3}$
$(1.5)^{2}=1.5 \times 1.5$
$=2.25$

$$
\begin{aligned}
& =\frac{2 \times 2}{3 \times 3} \\
& =\frac{4}{9}
\end{aligned}
$$

$\frac{4}{9}$ and 2.25 are perfect squares because they are the product of 2 equal factors.
$\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}, 50$
$\frac{2}{3}$ is a square root of $\frac{4}{9}$.
We write: $\sqrt{\frac{4}{9}}=\frac{2}{3}$
$2.25=1.5 \times 1.5$, so
1.5 is a square root of 2.25 .

We write: $\sqrt{2.25}=1.5$

Example 1 Finding a Perfect Square Given Its Square Root

Calculate the number whose square root is:
a) $\frac{5}{8}$
b) 1.2

Solution

A square root of a number is one of two equal factors of the number.
a) $\frac{5}{8}$
$\frac{5}{8} \times \frac{5}{8}=\frac{5 . \times 5}{8 \times 8}$
b) 1.2
Use a calculator.
$1.2 \times 1.2=1.44$
$=\frac{25}{64}$
So, 1.2 is a square root of 1.44 .

So, $\frac{5}{8}$ is a square root of $\frac{25}{64}$.

1. Calculate the perfect square with the given square root.
a) $\frac{3}{8}$
b) $\frac{3}{2}$
$\frac{3}{8} \times \frac{3}{8}=\frac{x}{-\times}$
$=$
$\frac{3}{8}$ is a square root of \qquad . $\frac{3}{2}$ is a square root of
c) 0.5
$0.5 \times 0.5=$ \qquad
0.5 is a square root of \qquad .
\qquad -
d) 2.5
$2.5 \times 2.5=$ \qquad
2.5 is a square root of \qquad .
 .

Example 2 Identifying Fractions that Are Perfect Squares

Is each fraction a perfect square? If so, find its square root.
a) $\frac{16}{25}$
b) $\frac{9}{20}$

Solution

Check if the numerator and denominator are perfect squares.
a) $\frac{16}{25}$
b) $\frac{9}{20}$
$16=4 \times 4$, so 16 is a perfect square.
$9=3 \times 3$, so 9 is a perfect square.
$25=5 \times 5$, so 25 is a perfect square.
20 is not a perfect square.
So, $\frac{16}{25}$ is a perfect square.
So, $\frac{9}{20}$ is not a perfect square.

Check

1. Determine whether the fraction is or is not a perfect square. How do you know?
a) $\frac{9}{49} \quad 9$ \qquad a perfect square because \qquad .

49 \qquad a perfect square because \qquad ـ.

So, $\frac{9}{49}$ \qquad a perfect square.
b) $\frac{25}{13}$ 25 \qquad a perfect square because \qquad
13 \qquad a perfect square because \qquad
So, $\frac{25}{13}$ \qquad a perfect square.
C) $\frac{64}{81}$

64 \qquad a perfect square because \qquad -

81 \qquad a perfect square because \qquad .

So, $\frac{64}{81}$ \qquad a perfect square.
2. Find the value of each square root.
a) $\sqrt{\frac{9}{4}}=$ \qquad b) $\sqrt{\frac{16}{81}}=\sqrt{\frac{x}{\times}}=$

A terminating decimal ends after a certain number of decimal places.
A repeating decimal has a repeating pattern of digits in the decimal expansion.
The bar shows the digits that repeat.

Terminating	Repeating	Non-terminating and non-repeating
$0.5 \quad 0.28$	$0.333333 \ldots=0 . \overline{3}$	
	$0.191919 \ldots=0 . \overline{19}$	$1.41421356 \ldots \quad 7.071067812 \ldots$

You can use a calculator to find out if a decimal is a perfect square. The square root of a perfect square decimal is either a terminating decimal or a repeating decimal.

Example 3 Identifying Decimals that Are Perfect Squares

Is each decimal a perfect square? How do you know?
a) 1.69
b) 3.5

Solution

Use a calculator to find the square root of each number.
a) $\sqrt{1.69}=1.3$

The square root is the terminating decimal 1.3:
So, 1.69 is a perfect square.
b) $\sqrt{3.5} \doteq 1.870828693$

The square root appears to be a decimal that neither repeats nor terminates.
So, 3.5 is not a perfect square.

The symbol \doteq means "approximately equal to".

1. Complete the table to find whether each decimal is a perfect square.

The first one is done for you.

	Decimal	Value of square root	Type of decimal	Is decimal a perfect square?
a)	70.5	8.396427811 ...	Non-repeating Non-terminating	No
b)	5.76			
c)	0.25			-
d)	2.5			-

Practice

1. Calculate the number whose square root is:
a) $\frac{1}{4}$
b) $\frac{2}{7}$
$\frac{1}{4} \times \frac{1}{4}=\frac{x}{\times}$
$=$ —
$\frac{1}{4}$ is a square root of \qquad .

c) 0.6
\qquad \times \qquad $=$ \qquad 0.6 is a square root of \qquad .
d) 1.1
\qquad \times \qquad $=$ \qquad
1.1 is a square root of \qquad .
2. Identify the fractions that are perfect squares. The first one has been done for you:

Fraction	Is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?	
a)	$\frac{81}{125}$	Yes; $9 \times 9=81$	No	No
b)	$\frac{25}{49}$			
c)	$\frac{36}{121}$			
d)	$\frac{17}{25}$			
e)	$\frac{9}{100}$			

3. Find each square root.
a) $\sqrt{\frac{49}{100}}=\sqrt{\frac{x}{x}}$
b) $\sqrt{\frac{25}{144}}=\sqrt{\frac{x}{x}}$
$=$
c) $\sqrt{\frac{1}{16}}=\sqrt{\frac{x}{x}}$
$=$ \qquad
d) $\sqrt{\frac{9}{400}}=\sqrt{\frac{x}{\times}}$
$=$ \qquad
4. Use a calculator. Find each square root.
a) $\sqrt{8.41}=$ \qquad b) $\sqrt{0.0676}=$
c) $\sqrt{51.125}=$ \qquad d) $\sqrt{6.25}=$ \qquad
5. Which decimals are perfect squares?
a) 1.44
$\sqrt{1.44}=$ \qquad
The square root is a decimal that
\qquad .

So, 1.44 \qquad a perfect square.
b) 30.25
$\sqrt{30.25}=$ \qquad
The square root is a decimal that \qquad .
So, 30.25 \qquad a perfect square.
c) 8.5
$\sqrt{8.5} \doteq$ \qquad
The square root is a decimal that \qquad \therefore
So, 8.5 \qquad a perfect square.
d) 0.0256
$\sqrt{0.0256}=$ \qquad
The square root is a decimal that \qquad .
So, 0.0256 _a perfect square.
6. Find the area of each square.
a)

Area $=$

Area $=$ \qquad
$=$ \qquad
$=$ \qquad
Area $=(\text { Length })^{2}$
The area is \qquad
\qquad
c) 5.4 units \square
Area $=$ \qquad
$=$ \qquad \times \qquad
$=$ \qquad
d)

Area $=$ \qquad
$=$ \qquad \times
\qquad
$=$ \qquad
7. Find the side length of each square.
a) Area $=\frac{9}{100}$ square units
Side Length $=\sqrt{ } \quad$ Length $=\sqrt{\text { Area }}$
$\sqrt{ }$
$=$ \qquad

The side length is \qquad units.
b) Area $=\frac{25}{36}$ square units

Length $=\sqrt{\square}$

$=$ \qquad
c) Area $=0.01$ square units Length $=$ \square

$=$
\qquad
d) Area $=$
46.24 square units

Length $=\sqrt{ }$
$=$ \qquad

1.2 Skill Builder

Degree of Accuracy

We are often asked to write an answer to a given decimal place.
To do this, we can use a number line.

To write 7.3 to the nearest whole number:
Place 7.3 on a number line in tenths.

7.3 is closer to 7 than to 8 .

So, 7.3 to the nearest whole number is: 7

To write 3.67 to the nearest tenth:
Place 3.67 on a number line in hundredths.

7 is the last digit.
It is in the hundredths position. So, use a number line in hundredths.
3.67 is closer to 3.7 than to 3.6 .

So, 3.67 to the nearest tenth is: 3.7 ,

Check

1. Write each number to the nearest whole number.

Mark it on the number line.
a) 5.3
b) 6.8 \qquad c) 7.1 \qquad d) 6.4 \qquad

2. Write each number to the nearest tenth.

Mark it on the number line.
a) 2.53
b) 2.64 \qquad c) 2.58 \qquad d) 2.66

Squares and Square Roots on Number Lines

Most numbers are not perfect squares.
You can use number lines to estimate the square roots of these numbers.

Squares

10 is between the perfect squares 9 and 16 .
So, $\sqrt{10}$ is between $\sqrt{9}$ and $\sqrt{16}$.
$\sqrt{9}=3$ and $\sqrt{16}=4$
So, $\sqrt{10}$ is between 3 and 4 .

Check with a calculator.
$\sqrt{10}=3.2$, which is between 3 and 4 .

Check

1. Between which 2 consecutive whole numbers is each square root?

Explain.
a) $\sqrt{22}$

22 is between the perfect squares 16 and 25 .

Refer to the squares and square roots number lines.

So, $\sqrt{22}$ is between \qquad and \qquad .
$\sqrt{\square}=$ \qquad and \qquad $=$ \qquad
So, $\sqrt{22}$ is between \qquad and \qquad .
b) $\sqrt{6}$

6 is between the perfect squares \qquad and \qquad .
So, $\sqrt{6}$ is between $\sqrt{\ldots}$ and \qquad .
$\sqrt{\square}=$ \qquad and \qquad $=$ \qquad
So, $\sqrt{6}$ is between \qquad and \qquad .

The Pythagorean Theorem

You can use the Pythagorean Theorem to find unknown lengths in right triangles.
Hypotenuse

Pythagorean Theorem

$$
h^{2}=a^{2}+b^{2}
$$

To find the length of the hypotenuse, h, in this triangle:

The length of the hypotenuse is 13 cm .

Check

1. Use the Pythagorean Theorem to find the length of each hypotenuse, h.
a)

$$
\begin{aligned}
& h^{2}=\square+ \\
& h^{2}=\square+
\end{aligned}
$$

$$
h^{2}=
$$

\qquad
$h=$ \qquad
$h=$ \qquad
The length of the hypotenuse is
\qquad cm . The length of the hypotenuse is \qquad cm .

1.2 Square Roots of Non-Perfect Squares

FOCUS Approximate the square roots of decimals and fractions that are

 not perfect squares.The top number line shows all the perfect squares from 1 to 100.

The bottom number line shows the square root of each number in the top line. You can use these lines to estimate the square roots of fractions and decimals that are not perfect squares.

Example 1 Estimating a Square Root of a Decimal

Estimate: $\sqrt{68.5}$

Solution

68.5 is between the perfect squares 64 and 81 .

Squares
So, $\sqrt{68.5}$ is between $\sqrt{64}$ and $\sqrt{81}$.
That is, $\sqrt{68.5}$ is between 8 and 9 .
Since 68.5 is closer to 64 than $81, \sqrt{68.5}$ is closer to 8 than 9 .
So, $\sqrt{68.5}$ is between 8 and 9 , and closer to 8 .

Check

1. Estimate each square root.

Explain your estimate.
a) $\sqrt{13.5}$
13.5 is between the perfect squares \qquad and \qquad .
So, $\sqrt{13.5}$ is between \square and \qquad That is, $\sqrt{13.5}$ is between \qquad and \qquad Since 13.5 is closer to \qquad than \qquad ,$\sqrt{13.5}$ is closer to \qquad than \qquad .
So, $\sqrt{13.5}$ is between \qquad and \qquad and closer to \qquad .
b) $\sqrt{51.5}$
51.5 is between the perfect squares \qquad and \qquad .
So, $\sqrt{51.5}$ is between \qquad and \qquad .
That is, $\sqrt{51.5}$ is between \qquad and \qquad .
Since 51.5 is closer to \qquad than \qquad ,$\sqrt{51.5}$ is closer to \qquad than \qquad .
So, $\sqrt{51.5}$ is between \qquad and \qquad , and closer to \qquad .

Example 2

Estimating a Square Root of a Fraction

Estimate: $\sqrt{\frac{3}{10}}$

Solution

Find the closest perfect square to the numerator and denominator.
In the fraction $\frac{3}{10}$:
3 is close to the perfect square 4.
10 is close to the perfect square 9.
So, $\sqrt{\frac{3}{10}} \doteq \sqrt{\frac{4}{9}}$ and $\sqrt{\frac{4}{9}}=\frac{2}{3}$
So, $\sqrt{\frac{3}{10}} \doteq \frac{2}{3}$

Check

1. Estimate each square root.
a) $\sqrt{\frac{23}{80}}$
b) $\sqrt{\frac{8}{17}}$
23 is close to the perfect square \qquad .
80 is close to the perfect square \qquad .
So, $\sqrt{\frac{23}{80}} \doteq \sqrt{-}$
So, $\sqrt{\frac{8}{17}} \doteq \sqrt{-}$

$\sqrt{\square}=-$
So, $\sqrt{\frac{23}{80}} \doteq$
So, $\sqrt{\frac{8}{17}}=$ \qquad

8 is close to the perfect square \qquad .
17 is close to the perfect square \qquad $-$

Example 3
 Finding a Number with a Square Root between Two Given Numbers

Identify a decimal that has a square root between 5 and 6 .

Solution

$5^{2}=25$, so 5 is a square root of 25 .
$6^{2}=36$, so 6 is a square root of 36 .
So, any decimal between 25 and 36 has a square root between 5 and 6 .
Choose 32.5.

Check the answer by using a calculator.
$\sqrt{32.5}=5.7$, which is between 5 and 6 .
So, the decimal 32.5 is one correct answer.
There are many more correct answers.

Check

1. a) Identify a decimal that has a square root between 7 and 8 .

Check the answer. $7^{2}=$ \qquad and $8^{2}=$ \qquad
So, any decimal between \qquad and \qquad has a square root between 7 and 8 . Choose \qquad .
Check the answer on a calculator.
\qquad
\qquad
The decimal \qquad is one correct answer.
b) Identify a decimal that has a square root between 11 and 12 .
\qquad = \qquad and \qquad $=$ \qquad
So, any decimal between \qquad and \qquad has a square root between 11 and 12 .
Choose \qquad .

\qquad
So, \qquad is one correct answer.

Practice

1. For each number, name the 2 closest perfect squares and their square roots.

	Number	Two closest perfect squares	Their square roots
a)	44.4	\ldots and	and
	10.8	and	and
	125.9	and	and
c)	125.9	and	
	87.5	and	

2. For each fraction, name the closest perfect square and its square root for the numerator and for the denominator.

	Fraction	Closest perfect squares	Their square roots
a)	$\frac{5}{11}$	Numerator: ___ denominator:	$\square{ }^{\text {and }}$
b)	$\frac{17}{45}$	Numerator: ___ denominator:	\therefore and
c)	$\frac{3}{24}$	Numerator: ___ denominator: ___	___ and ___
d)	$\frac{11}{62}$	Numerator: ___ denominator:	\ldots and ___

3. Estimate each square root.

Explain.
a) $\sqrt{1.6}$
1.6 is between \qquad and \qquad .
So, $\sqrt{1.6}$ is between \qquad and \qquad
That is, $\sqrt{1.6}$ is between \qquad and \qquad
Since 1.6 is closer to \qquad than \qquad $\sqrt{1.6}$ is closer to \qquad than \qquad .
So, $\sqrt{1.6}$ is between \qquad and \qquad and closer to \qquad .
b) $\sqrt{44.5}$
44.5 is between \qquad and \qquad .
So, $\sqrt{44.5}$ is between \qquad and \qquad .
That is, $\sqrt{44.5}$ is between \qquad and \qquad :
Since 44.5 is closer to \qquad than \qquad $\sqrt{44.5}$ is closer to \qquad than \qquad .
So, $\sqrt{44.5}$ is between \qquad and \qquad and closer to \qquad .
c) $\sqrt{75.8}$
75.8 is between \qquad and \qquad -.

So, $\sqrt{75.8}$ is between \qquad and \qquad
That is, $\sqrt{75.8}$ is between \qquad and \qquad
Since 75.8 is closer to \qquad than \qquad $\sqrt{75.8}$ is closer to \qquad than \qquad .
So, $\sqrt{75.8}$ is between \qquad and \qquad and closer to \qquad .
4. Estimate each square root. Explain.
a) $\sqrt{\frac{7}{15}}$
b) $\sqrt{\frac{2}{7}}$
2 is close to \qquad ; 7 is close to \qquad .
7 is close to \qquad ; 15 is close to \qquad .
So, $\sqrt{\frac{2}{7}} \doteq \sqrt{ }$ \doteq
d) $\sqrt{\frac{99}{122}}$
c) $\sqrt{\frac{35}{37}}$
So, $\begin{aligned} \sqrt{\frac{7}{15}} & \doteq \sqrt{-} \\ & \doteq\end{aligned}$
99 is close to \qquad ; 122 is close to \qquad .
35 is close to \qquad ; 37 is close to \qquad -
So, $\sqrt{\frac{35}{37}}=\sqrt{\square}$

$$
\doteq
$$

So, $\sqrt{\frac{99}{122}} \doteq \sqrt{\square}$

$$
\doteq
$$

5. Identify a decimal that has a square root between the two given numbers.

Check the answer.
a) 1 and 2
$1^{2}=$ \qquad and $2^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 1 and 2 .
Choose \qquad _
Check: \square is one possible answer.
The decimal \qquad
b) 8 and 9
$8^{2}=$ \qquad and $9^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 8 and 9 .
Choose \qquad
Check: \qquad \pm
The decimal \qquad is one possible answer.
c) 2.5 and 3.5
\qquad $=$ \qquad and \qquad $=$ \qquad
So, any number between \qquad and \qquad has a square root between 2.5 and 3.5 . Choose \qquad
Check: \qquad -
The decimal \qquad is one correct answer.
d) 20 and 21
\qquad $=$ \qquad and \qquad $=$ \qquad
So, any number between \qquad and \qquad has a square root between 20 and 21 .
Choose \qquad $\stackrel{\circ}{\circ}$ \qquad
The decimal \qquad is one correct answer.
6. Determine the length of the hypotenuse in each right triangle. Write each answer to the nearest tenth.
a)

$h^{2}=5.1^{2}+6.3^{2}$
$h^{2}=$ \qquad $+$ \qquad

$$
h^{2}=
$$

\qquad

$$
h=\sqrt{ }
$$

$$
h \doteq
$$

\qquad
So, h is about \qquad m.
b)

\qquad
$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad
$h=$ \qquad
$h \doteq$ \qquad
So, h is about \qquad m.

Can you ...

- Identify decimals and fractions that are perfect squares?
- Find the square roots of decimals and fractions that are perfect squares?
- Approximate the square roots of decimals and fractions that are not perfect squares?
1.1 1. Calculate the number whose square root is:
a) $\frac{2}{7}$
$\frac{2}{7} \times \frac{2}{7}=$ \qquad
$\frac{2}{7}$ is a square root of
b) $\frac{8}{11}$
$\times \quad=$
\qquad -
$\frac{8}{11}$ is a square root of \qquad -
c) 0.1
\qquad \times \qquad $=$ \qquad
0.1 is a square root of \qquad .
d) 1.4
$1.4 \times 1.4=$ \qquad
1.4 is a square root of \qquad .

2. Identify the fractions that are perfect squares.

The first one has been done for you.
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { Fraction } & \begin{array}{l}\text { Is numerator a perfect } \\
\text { square? }\end{array} & \begin{array}{l}\text { Is denominator a } \\
\text { perfect square? }\end{array} & \begin{array}{l}\text { Is fraction a } \\
\text { perfect square? }\end{array}
$$

\hline a) \& \frac{64}{75} \& Yes; 8 \times 8=64 \& No\end{array}\right]\) No | b) |
| :--- |
| $\frac{9}{25}$ |

3. Find each square root.
a) $\sqrt{\frac{9}{49}}=\sqrt{\frac{\times}{\times}}$
$=$
\qquad
b) $\sqrt{\frac{16}{25}}=\sqrt{\frac{x}{\times}}$
= \qquad
c) $\sqrt{\frac{36}{121}}=\sqrt{\frac{x}{\times}}$
$=$
\qquad
4. a) Put a check mark beside each decimal that is a perfect square.
i) 4.84
ii) 3.63 \qquad iii) 98.01 \qquad iv) 67.24 \qquad
b) Explain how you identified the perfect squares in part a.
\qquad
\qquad
5. a) Find the area of the shaded square.

The area is \qquad square units.
b) Find the side length of the shaded square.

Area $=\frac{81}{100}$ square units

Area $=(\text { Length })^{2}$
$=()^{2}$

$$
=x
$$

$$
=
$$

\qquad
\qquad square units.

$$
\begin{aligned}
\text { Length } & =\sqrt{\text { Area }} \\
& =\sqrt{ } \\
& =\sqrt{\times} \\
& =
\end{aligned}
$$

The side length is \qquad units.
1.2 6. Estimate each square root.

Explain.
a) $\sqrt{7.5}$
7.5 is between \qquad and \qquad .
So, $\sqrt{7.5}$ is between $\sqrt{ }$ \qquad and \qquad
That is, $\sqrt{7.5}$ is between \qquad and \qquad -
Since 7.5 is closer to \qquad than \qquad $\sqrt{7.5}$ is closer to \qquad than \qquad .
So, $\sqrt{7.5}$ is between \qquad and \qquad and closer to \qquad .
b) $\sqrt{66.6}$
66.6 is between \qquad and \qquad _.

So, $\sqrt{66.6}$ is between \square and \qquad
That is, $\sqrt{66.6}$ is between \qquad and \qquad .
Since 66.6 is closer to \qquad than \qquad $\sqrt{66.6}$ is closer to \qquad than \qquad .
So, $\sqrt{66.6}$ is between \qquad and \qquad and closer to \qquad .
7. Estimate each square root.
a) $\sqrt{\frac{15}{79}}$
b) $\sqrt{\frac{23}{50}}$

15 is close to \qquad ; 79 is close to \qquad .

23 is close to \qquad ; 50 is close to \qquad :

$$
\text { So, } \begin{aligned}
& \sqrt{\frac{15}{79}}=\sqrt{\square} \\
& \doteq \\
&-
\end{aligned}
$$

So, $\sqrt{\frac{23}{50}}=\sqrt{\square}$
\doteq
8. Identify a decimal whose square root is between the given numbers.

Check your answer.
a) 2 and 3
$2^{2}=$ \qquad and $3^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 2 and 3 .
Choose \qquad .
Check: \qquad
\qquad
The decimal \qquad is one correct answer.
b) 6 and 7
$6^{2}=$ \qquad and $7^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 6 and 7 .
Choose \qquad .
$\sqrt{\square} \doteq$ \qquad
The decimal \qquad is one correct answer.
9. Find the length of each hypotenuse.
a)

b)

$$
\begin{aligned}
& h^{2}= \\
& h^{2}= \\
& h^{2}= \\
& h=\square \\
& h= \\
& h
\end{aligned}
$$

$h^{2}=$ \qquad
\qquad
$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad
$h=$

$h \doteq$ \qquad

The length of the hypotenuse is about \qquad m.

The length of the hypotenuse is about \qquad m.

1.3 Skill Builder

Surface Areas of Rectangular Prisms

The surface area of a rectangular prism is the sum of the areas of its 6 rectangular faces. Look for matching faces with the same areas.

For each rectangular face, area equals its length times its width.

Matching Faces	Diagram	Corresponding Area (cm^{2})
		$2(10 \times 6)=120$
		$2(10 \times 8)=160$
		$2(8 \times 6)=96$
Total		376

The surface area is $376 \mathrm{~cm}^{2}$.

2.1 Skill Builder

Multiplying Integers

When multiplying 2 integers, look at the sign of each integer:

- When the integers have the same sign, their product is positive.

\boldsymbol{x}	$\mathbf{(-)}$	$\mathbf{(+)}$
$\mathbf{(-)}$	$(+)$	$(-)$
$\mathbf{(+)}$	$(-)$	$(+)$

- When the integers have different signs, their product is negative.
$6 \times(-3) \quad$ These 2 integers have different signs, so their product is negative.
$6 \times(-3)=-18$
$(-10) \times(-2) \quad$ These 2 integers have the same is positive, we do not have to write the + sign in
$(-10) \times(-2)=20$ sign, so their product is positive.
front.

Check

1. Will the product be positive or negative?
a) 7×4 \qquad b) $3 \times(-6)$ \qquad
c) $(-9) \times 10$ \qquad d) $(-5) \times(-9)$ \qquad
2. Multiply.
a) $7 \times 4=$ \qquad
b) $3 \times(-6)=$ \qquad
c) $(-9) \times 10=$ \qquad
d) $(-5) \times(-9)=$ \qquad
e) $(-3) \times(-5)=$ \qquad
f) $2 \times(-5)=$ \qquad
g) $(-8) \times 2=$ \qquad
h) $(-4) \times 3=$ \qquad

Multiplying More than 2 Integers

We can multiply more than 2 integers.
Multiply pairs of integers, from left to right.

$$
\begin{aligned}
&(-\underbrace{1}) \times(-2) \times(-3) \\
&=2 \times(-3) \\
&=-6
\end{aligned}
$$

$$
\begin{aligned}
&(-\underbrace{1}) \times(-2) \times(-3) \times(-4) \\
&=\underbrace{2 \times(-3) \times(-4)} \\
&=(-6) \times(-4) \\
&=24
\end{aligned}
$$

The product of 3 negative factors is negative.

The product of 4 negative factors is positive.

Multiplying Integers

When the number of negative factors is even, the product is positive. When the number of negative factors is odd, the product is negative.

We can show products of integers in different ways:
$(-2) \times(-2) \times 3 \times(-2)$ is the same as $(-2)(-2)(3)(-2)$.

So, $(-2) \times(-2) \times 3 \times(-2)=(-2)(-2)(3)(-2)$

$$
=-24
$$

Check

1. Multiply.
a) $(-3) \times(-2) \times(-1) \times 1$
b) $(-2)(-1)(-2)(-2)(2)$ \qquad
c) $(-2)(-2)(-1)(-2)(-2)$ \qquad

d) $3 \times 3 \times 2$ \qquad
\qquad
\qquad

2.1 What Is a Power?

FOCUS Show repeated multiplication as a power.

We can use powers to show repeated multiplication.

We read 2^{5} as " 2 to the 5 th."
Here are some other powers of 2 .

Repeated Multiplication	Power \therefore	Read as...	
$\underbrace{2}_{1 \text { factor of } 2}$	2^{1}	2 to the 1st	In each case, the exponent in the power is equal to the
$\underbrace{2 \times 2}_{2 \text { factors of } 2}$	2^{2}	2 to the 2 nd, or 2 squared	number of factors in the repeated multiplication.
$\underbrace{2 \times 2 \times 2}_{3 \text { factors of } 2}$	2^{3}	2 to the 3rd, or 2 cubed	
$\underbrace{2 \times 2 \times 2 \times 2}_{4 \text { factors of. } 2}$	24	2 to the 4th	

Example 1
 Writing Powers

Write as a power.
a) $4 \times 4 \times 4 \times 4 \times 4 \times 4$
b) 3

Solution

a) The base is 4 .
$\underbrace{4 \times 4 \times 4 \times 4 \times 4 \times 4}_{6 \text { factors of } 4}=4^{6}$
So, $4 \times 4 \times 4 \times 4 \times 4 \times 4=4^{6}$
b) The base is 3 .
$\frac{3}{1}$ factor of 3
So, $3=3^{1}$

Check

1. Write as a power.
a) $2 \times 2 \times 2 \times 2 \times 2 \times 2=2$ -
b) $5 \times 5 \times 5 \times 5=5-$
c) $(-10)(-10)(-10)=$ \qquad
d) $4 \times 4=$ \qquad
e) $(-7)(-7)(-7)(-7)(-7)(-7)(-7)(-7)=$ \qquad
2. Complete the table.

	Repeated Multiplication	Power	Read as...
a)	$8 \times 8 \times 8 \times 8$		8 to the 4 th
b)	7×7		
c)	$3 \times 3 \times 3 \times 3 \times 3 \times 3$		3 to the 6 th
d)	$2 \times 2 \times 2$		

Power	Repeated Multiplication	Standard Form
2^{5}	$2 \times 2 \times 2 \times 2 \times 2$	32

Example 2 Evaluating Powers

Write as repeated multiplication and in standard form.
a) 2^{4}
b) 5^{3}

Solution

a) $2^{4}=2 \times 2 \times 2 \times 2$. As repeated multiplication
$=16 \quad$ Standard form
b) $5^{3}=5 \times 5 \times 5$

As repeated multiplication
$=125$
Standard form

Check

1. Complete the table.

Power	Repeated Multiplication	Standard Form
2^{3}	$2 \times 2 \times 2$	
6^{2}		36
3^{4}		
10^{4}		
8 squared		
7 cubed		

To evaluate a power that contains negative integers, identify the base of the power. Then, apply the rules for multiplying integers.

Example 3
 Evaluating Expressions Involving Negative Signs

Identify the base, then evaluate each power.
a) $(-5)^{4}$
b) -5^{4}

Solution

a) $(-5)^{4}$

$$
\begin{aligned}
(-5)^{4} & =(-5) \times(-5) \times(-5) \times(-5) \\
& =625
\end{aligned}
$$

The brackets tell us that the base of this power is (-5).

There is an even number of negative integers, so the product is positive.
b) -5^{4}

There are no brackets. So, the base of this power is 5 . The negative sign applies to the whole expression.

$$
\begin{aligned}
-5^{4} & =-(5 \times 5 \times 5 \times 5) \\
& =-625
\end{aligned}
$$

Check

1. Identify the base of each power, then evaluate.
a) $(-1)^{3}$

The base is \qquad .
$(-1)^{3}=$ \qquad
$=$ \qquad
c) $(-7)^{2}$

The base is \qquad .
$(-7)^{2}=$ \qquad $=$ \qquad
b) -10^{3}

The base is \qquad .
$-10^{3}=$ \qquad
\qquad
The first negative
d) $-(-5)^{4}$

The base is \qquad -
$-(-5)^{4}=$ \qquad
$=$ \qquad

Practice

1. Write as a power.
a) $\frac{8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8}{7 \text { factors of } 8}$

The base is 8 . There are \qquad equal factors, so the exponent is \qquad .
$8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8=8-$
b) $\frac{10 \times 10 \times 10 \times 10 \times 10}{5 \text { factors of } 10}$

The base is \qquad There are \qquad equal factors, so the exponent is \qquad .

So, $10 \times 10 \times 10 \times 10 \times 10=$ \qquad
c) $\underbrace{(-2)(-2)(-2)}_{3 \text { factors of }}$

The base is \qquad There are \qquad equal factors, so the exponent is \qquad .

So, $(-2)(-2)(-2)=$ \qquad
d) $(-13)(-13)(-13)(-13)(-13)(-13)$
\qquad factors of \qquad
The base is \qquad There are \qquad equal factors, so the exponent is \qquad .
So, $(-13)(-13)(-13)(-13)(-13)(-13)=$ \qquad
2. Write each expression as a power.
a) $9 \times 9 \times 9 \times 9=$ \qquad 4
b) $(5)(5)(5)(5)(5)(5)=5$
c) $11 \times 11=$ \qquad d) $(-12)(-12)(-12)(-12)(-12)=$
\qquad
3. Write each power as repeated multiplication.
a) $3^{2}=$ \qquad b) $3^{4}=$ \qquad
c) $2^{7}=$ \qquad
d) $10^{8}=$ \qquad
4. State whether the answer will be positive or negative.
a) $(-3)^{2}$ \qquad b) 6^{3}
c) $(-10)^{3}$ \qquad d) -4^{3}
\qquad first.
5. Write each power as repeated multiplication and in standard form.
a) $(-3)^{2}=$ \qquad
$=$ \qquad
b) $6^{3}=$ \qquad
$=$ \qquad
c) $(-10)^{3}=$ \qquad
d) $-4^{3}=$ \qquad

$$
=
$$

Predict. Will the answer be positive or negative?
6. Write each product as a power and in standard form.
a) $(-3)(-3)(-3)=$ \qquad
$=$ \qquad
b) $(-8)(-8)=$ \qquad

$$
=
$$

\qquad
c) $-(8 \times 8 \times 8)=$ \qquad $=$ \qquad
d) $-(-1)(-1)(-1)(-1)(-1)(-1)(-1)=$ \qquad
$=$ \qquad
7. Identify any errors and correct them.
a) $4^{3}=12$
b) $(-2)^{9}$ is negative. \qquad
c) $(-9)^{2}$ is negative. \qquad
d) $3^{2}=2^{3}$ \qquad
e) $(-10)^{2}=100$ \qquad

2.2 Skill Builder

Patterns and Relationships in Tables
Look at the patterns in this table.

The input starts at 1 and increases by 1 each time.
The output starts at 2 and increases by 2 each time.

The input and output are also related.
Double the input to get the output.

Check

1. a) Describe the patterns in the table.
b) What is the input in the last row?

What is the output in the last row?

Input	Output
1	5
2	10
3	15
4	20

a) The input starts at \qquad and increases by \qquad each time.
The output starts at \qquad and increases by \qquad each time.
You can also multiply the input by \qquad to get the output.
b) The input in the last row is $4+$ \qquad $=$ \qquad .
The output in the last row is $20+$ \qquad $=$ \qquad .
2. a) Describe the patterns in the table.
b) Extend the table 3 more rows.

Input	Output
10	100
9	90
8	80
7	70
6	60

a) The input starts at 10, and decreases by \qquad each time.
The output starts at 100, and decreases by \qquad each time.
You can also multiply the input by \qquad to get the output.
b) To extend the table 3 more rows, continue to decrease the input by
\qquad each time.
Decrease the output by \qquad each time.

Input	Output
5	-
	-
	-

Writing Numbers in Expanded Form

8000 is 8 thousands, or 8×1000
600 is 6 hundreds, or 6×100
50 is 5 tens, or 5×10

Check

1. Write each number in expanded form.
a) 7000
b) 900
c) 400
d) 30

2.2 Powers of Ten and the Zero Exponent

FOCUS Explore patterns and powers of 10 to develop a meaning for the exponent 0.

This table shows decreasing powers of 3 .

Power	Repeated Multiplication	Standard Form
3^{5}	$3 \times 3 \times 3 \times 3 \times 3$	243
3^{4}	$3 \times 3 \times 3 \times 3$	81
3^{3}	$3 \times 3 \times 3$	27
3^{2}	3	9
3^{1}	3	$\div 3$

Look for patterns in the columns.
The exponent decreases by 1 each time.

Divide by 3 each time.

The patterns suggest $3^{0}=1$ because $3 \div 3=1$.
We can make a similar table for the powers of any integer base except 0 .

The Zero Exponent

A power with exponent 0 is equal to 1 .

The base of the power can be any integer except 0 .

Example 1 Powers with Exponent Zero

Evaluate each expression.
a) 6^{0}
b) $(-5)^{0}$

Solution

A power with exponent 0 is equal to 1 .
The zero exponent
a) $6^{0}=1$
b) $(-5)^{0}=1$

Check

1. Evaluate each expression.
a) $8^{0}=$ \qquad b) $-4^{0}=$ \qquad
c) $4^{0}=$ \qquad d) $(-10)^{0}=$ \qquad only to the base.

Write as a power of 10.
a) 10000
b) 1000
c) 100
d) 10
e) 1

Solution

a) $10000=10 \times 10 \times 10 \times 10$

$$
=10^{4}
$$

b) $1000=10 \times 10 \times 10$

$$
=10^{3}
$$

c) $100=10 \times 10$

$$
=10^{2}
$$

d) $10=10^{1}$

e) $1=10^{0}$

Check

1. a) $5^{1}=$ \qquad
b) $(-7)^{1}=$
c) $10^{1}=$ \qquad d) $10^{\circ}=$ \qquad

Practice

1. a) Complete the table below.

Power	Repeated Multiplication	Standard Form
5^{4}	$5 \times 5 \times 5 \times 5$	625
5^{3}	$5 \times 5 \times 5$	
5^{2}		
5^{1}		

b) What is the value of 5^{1} ?
c) Use the table. What is the value of 5^{0} ?
2. Evaluate each power.
a) $2^{0}=$ \qquad b) $9^{0}=$ \qquad
c) $(-2)^{0}=$ \qquad
d) $-2^{0}=$ \qquad
e) $10^{1}=$ \qquad
f) $(-8)^{1}=$ \qquad
If there are no brackets, the exponent applies only to the base.
3. Write each number as a power of 10 .
a) $10000=10-$
b) $1000000=10$
c) Ten million $=$ \qquad d) One = \qquad
e) $1000000000=$
\qquad f) $10=$ \qquad
4. Evaluate each power of 10 .
a) $-10^{6}=$ \qquad b) $-10^{0}=$
c) $-10^{8}=$ \qquad d) $-10^{1}=$ \qquad
5. One trillion is written as 1000000000000 .

Write each number as a power of 10 .
a) One trillion $=1000000000000=$ \qquad
b) Ten trillion $=10 \times$ \qquad $=$
c) One hundred trillion $=$ \qquad $=$ \qquad
6. Write each number in standard form.
a) $5 \times 10^{4}=5 \times 10000$
\qquad
b) $\left(4 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(7 \times 10^{0}\right)=(4 \times 100)+$ \qquad $=$
$=$
c) $\left(2 \times 10^{3}\right)+\left(6 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(9 \times 10^{0}\right)$
$=$ \qquad
$=$ \qquad
$=$ \qquad
d) $\left(7 \times 10^{3}\right)+\left(8 \times 10^{0}\right)=$ \qquad
\qquad
$=$

2.3 Skill Builder

Adding Integers

To add a positive integer and a negative integer: $7+(-4)$

- Model each integer with tiles.
- Circle zero pairs.

There are 4 zero pairs.
There are 3 图 tiles left.
They model 3.

So, $7+(-4)=3$
To add 2 negative integers: $(-4)+(-2)$

- Model each integer with tiles.
- Combine the tiles.
-4 뵤
$-2: \square$
There are 6 tiles.
They model -6 .
So, $(-4)+(-2)=-6$

Check

1. Add.
a) $(-3)+(-4)=$ \qquad b) $6+(-2)=$ \qquad
c) $(-5)+2=$ \qquad
d) $(-4)+(-4)=$ \qquad
2. a) Kerry borrows $\$ 5$. Then she borrows another $\$ 5$.

Add to show what Kerry owes.
$(-5)+(-5)=$ \qquad Kerry owes \$ \qquad .
b) The temperature was $8^{\circ} \mathrm{C}$. It fell $10^{\circ} \mathrm{C}$.

Add to show the new temperature.
$8+($ \qquad) = \qquad The new temperature is \qquad ${ }^{\circ} \mathrm{C}$.

Subtracting Integers

To subtract 2 integers：3－6
－Model the first integer．
－Take away the number of tiles equal to the second integer．

Model 3.
圈 圈

To take away 6 ，we need 3 more 圈 tiles．
We add zero pairs．Add 3 tiles and 3 tiles．

Now take away the 6 圈 tiles．

Since 3 tiles remain，we write： $3-6=-3$
When tiles are not available，think of subtraction as the opposite of addition．
To subtract an integer，add its opposite integer．
For example，
$(-3)-(+2)=-5$
$(-3)+(-2)=-5$

Check

1．Subtract．
a）$(-6)-2=$ \qquad b） $2-(-6)=$
c）$(-8)-9=$ \qquad d） $8-(-9)=$ \qquad

Dividing Integers

When dividing 2 integers, look at the sign of each integer:

- When the integers have the same sign, their quotient is positive.
- When the integers have different signs, their quotient is negative.

The same rule applies to the multiplication of integers.
$6 \div(-3) \quad$ These 2 integers have different signs, so their quotient is negative.
$6 \div(-3)=-2$
$(-10) \div(-2) \quad$ These 2 integers have the same sign, so their quotient is positive.
$(-10) \div(-2)=5$

Check

1. Calculate.
a) $(-4) \div 2$
$=$ \qquad
b) $(-6) \div(-3)$
$=$ \qquad
c) $15 \div(-3)$
$=$ \qquad

2.3 Order of Operations with Powers

FOCUS Explain and apply the order of operations with exponents.

We use this order of operations when evaluating an expression with powers:

- Do the operations in brackets first.
- Evaluate the powers.
- Multiply and divide, in order, from left to right.
- Add and subtract, in order, from left to right.

We can use the word BEDMAS to help us remember the order of operations:
B Brackets
E Exponents
D Division
M Multiplication
A. Addition

S Subtraction

Example 1
 Adding and Subtracting with Powers

Evaluate.
a) $2^{3}+1$
b) $8-3^{2}$
c) $(3-1)^{3}$

Solution

a) $2^{3}+1$
$=(2)(2)(2)+1$
$=8+1$
$=9$
b) $8-3^{2}$
$=8-(3)(3)$
$=8-9$
$=-1$
c) $(3-1)^{3}$
$=2^{3}$
$=(2)(2)(2)$
$=8$

Evaluate the power first: 2^{3}
Multiply: (2)(2)(2)
Then add: $8+1$

Evaluate the power first: 3^{2}
Multiply: (3)(3)
Then subtract: 8 - 9

Subtract inside the brackets first: 3-1
Evaluate the power: 2^{3}
Multiply: (2)(2)(2)

Check

1. Evaluate.
a) $4^{2}+3=$ \qquad $+3$
= \qquad
$=$ \qquad
b) $5^{2}-2^{2}=$ \qquad $-(2)(2)$
$=$ \qquad
$=$ \qquad
c) $(2+1)^{2}=$ \qquad 2
$=$ \qquad
$=$ \qquad
d) $(5-6)^{2}=$ \qquad
$=$ \qquad
$=$ \qquad

Example

Multiplying and Dividing with Powers

Evaluate.
a) $\left[2 \times(-2)^{3}\right]$
Curved brackets
Square brackets
b) $\left(7^{2}+5^{0}\right) \div(-5)^{1}$
When we need curved brackets for integers, we use square brackets to show the order of operations.

Solution

a) $\left[2 \times(-2)^{3}\right]^{2} \quad$ Evaluate what is inside the square brackets first: $2 \times(-2)^{3}$
$=[2 \times(-8)]^{2}$
$=(-16)^{2}$
$=256$
b) $\left(7^{2}+5^{0}\right) \div(-5)^{1} \quad$ Evaluate what is inside the brackets first: $7^{2}+5^{0}$
$=(49+1) \div(-5)^{1} \quad$ Add inside the brackets: $49+1$
$=50 \div(-5)^{1} \quad$ Evaluate the power: $(-5)^{1}$
$=50 \div(-5)$
$=-10$

Check

1. Evaluate.
a) $5 \times 3^{2}=5 \times$ \qquad

$$
=5 \times
$$

$$
=
$$

\qquad
b) $8^{2} \div 4=$ \qquad $\div 4$ $=-\quad \div 4$
= \qquad
c) $\left(3^{2}+6^{0}\right)^{2} \div 2^{1}$
$=($ \qquad $)^{2} \div 2^{1}$
$=$ \qquad $\div 2^{1}$
$=$ \qquad \div
$=$ \qquad
d) $10^{2}+\left(2 \times 2^{2}\right)^{2}=10^{2}+(2 \times$ \qquad $)^{2}$
$=10^{2}+$ \qquad
$=$ $+$ \qquad

Example 3

Solving Problems Using Powers

Corin answered the following skill-testing question to win free movie tickets:

$$
120+20^{3} \div 10^{3}+12 \times 120
$$

His answer was 1568.
Did Corin win the movie tickets? Show your work.

Solution

$$
\begin{aligned}
& 120+20^{3} \div 10^{3}+12 \times 120 \\
& =120+8000 \div 1000+12 \times 120 \\
& =120+8+1440 \\
& =1568
\end{aligned}
$$

Corin won the movie tickets.

Evaluate the powers first: 20^{3} and 10^{3}
Divide and multiply.
Add: $120+8+1440$

Check

1. Answer the following skill-testing question to enter a draw
for a Caribbean cruise.

$$
\begin{aligned}
& (6+4)+3^{2} \times 10-10^{2} \div 4 \\
& = \\
& = \\
& =
\end{aligned}
$$

Practice

1. Evaluate.
a) $2^{2}+1=$ \qquad $+1$
$=-\quad+1$
c) $(2+1)^{2}=$ \qquad
\qquad
a) $4 \times 2^{2}=4 \times$ \qquad
b) $4^{2} \times 2=$ \qquad $\times 2$
$=\cdots \times 2$
$=$
\qquad
$\cdots=4 \times$
$=$ \qquad
c) $(4 \times 2)^{2}=$ \qquad
$=$ \qquad
d) $(-4)^{2} \div 2=$ \qquad $\div 2$
$=$ \qquad
$=$ \qquad
b) $2^{2}-1=$ \qquad -1
$=$ \qquad
d) $(2-1)^{2}=$ \qquad
$=$ \qquad

2. Evaluate.

3. Evaluate.
a) $2^{3}+(-1)^{3}=$ \qquad $+(-1)^{3}$
b) $(2-1)^{3}=$ \qquad
$=$ \qquad $=+(-1)^{3}$
$=$ \qquad $+$ \qquad
$=$ \qquad $\square-$
$=$
d) $(2+1)^{3}=$ \qquad

$\because \quad=$ \qquad
\qquad
c) $2^{3}-(-1)^{3}=$
$=$
\qquad
$-(-1)^{3}$

$$
=
$$

\qquad
$=$
\qquad

. Evaluate.
a) $3^{2} \div(-1)^{2}=$ \qquad $\div(-1)^{2}$
$=$ \qquad $\div(-1)^{2}$
$=$
$=$ \qquad \div
\qquad
c) $3^{2} \times(-2)^{2}=$ $\times(-2)^{2}$
$=$
$=$
$=$
$=$ \qquad \times

$$
=
$$

d) $\begin{aligned} 5^{2} \div(-5)^{1} & = \\ & =\end{aligned}$
$=$
\qquad
b) $(3 \div 1)^{2}=$ \qquad 2
5. Evaluate.
a) $(-2)^{0} \times(-2)=$ \qquad $\times(-2)$
b) $2^{3} \div(-2)^{2}=$ \qquad $\div(-2)^{2}$
$=$ \qquad $\div(-2)^{2}$
$=$ \qquad \div \qquad

$$
=\ldots \div
$$

$$
=
$$

$=$ \qquad
c) $(3+2)^{0}+(3 \times 2)^{0}=$ \qquad $+$ \qquad
$=$ \qquad
e) $(2)(3)-(4)^{2}=(2)(3)-$ \qquad
g) $(-2)^{2}+(3)(4)=$ \qquad $+(3)(4)$
$=$ \qquad $+(3)(4)$
$=$ \qquad $+$
= \qquad
d) $\left(3 \times 5^{2}\right)^{0}=$ \qquad .
f) $3(2-1)^{2}=3$ \qquad exponent 0 is
\qquad equal to 1 .
h) $(-2)+3^{0} \times(-2)=(-2)+$ \qquad

$$
=(-2)+
$$

\qquad
$=$ \qquad $\times(-2)$
6. Amaya wants to replace the hardwood floor in her house.

Here is how she calculates the cost, in dollars:
$70 \times 6^{2}+60 \times 6^{2}$
How much will it cost Amaya to replace the hardwood floor?
$70 \times$ \qquad $+60 \times$ \qquad
$=70 \times$ \qquad $+60 \times$ \qquad
$=$ $+$ \qquad
$=$ \qquad
It will cost Amaya \$ \qquad to replace the hardwood floor.

Can you

- Use powers to show repeated multiplication?
- Use patterns to evaluate a power with exponent zero, such as 50?
- Use the correct order of operations with powers?
2.1 1. Give the base and exponent of each power.
a) 6^{2}
Base: \qquad Exponent: \qquad
There are \qquad factors of \qquad .
b) 4^{5}
Base: \qquad Exponent: \qquad
There are \qquad factors of \qquad
c) $(-3)^{8} \quad$ Base: \qquad Exponent: \qquad
There are \qquad factors of \qquad .
d) $-3^{8} \quad$ Base: \qquad Exponent: \qquad
There are \qquad factors of \qquad .

2. Write as a power.
a) $7 \times 7 \times 7 \times 7 \times 7 \times 7=7$
b) $2 \times 2 \times 2 \times 2=2-$
c) $5=$ \qquad
d) $(-5)(-5)(-5)(-5)(-5)=$ \qquad
3. Write each power as repeated multiplication and in standard form.
a) $5^{2}=5 x$ \qquad $=$ \qquad
b) $2^{3}=$ \qquad $=$ \qquad
c) $3^{4}=$ \qquad $=$ \qquad
2.2 4. a) Complete the table.

Power	Repeated Multiplication	Standard Form
7^{3}	$7 \times 7 \times 7$	343
7^{2}	7×7	
7^{1}		

b) What is the value of 7^{0} ? \qquad
5. Write each number in standard form and as a power of 10.
a) One hundred $=100$

$$
=10-
$$

b) Ten thousand = \qquad

$$
=10
$$

c) One million $=$ \qquad

$$
=10
$$

d) One $=$ \qquad

$$
=10
$$

6. Evaluate.
a) $6^{0}=$
b) $(-8)^{0}=$ \qquad
c) $12^{1}=$ \qquad
d) $-8^{0}=$ \qquad
7. Write each number in standard form.
a) 4×10^{3}
$=4 \times$ \qquad
$=$ \qquad
b) $\left(1 \times 10^{3}\right)+\left(3 \times 10^{2}\right)+\left(2 \times 10^{1}\right)+\left(1 \times 10^{0}\right)$
$=(1 \times 1000)+(3 \times$ \qquad) $+($ \qquad $)+($ \qquad
$=$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad
$=$ \qquad
c) $\left(4 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(6 \times 10^{0}\right)$ $=(4 \times \ldots)+(\square)+(\square)$
\qquad
$=$ \qquad
d) $\left(8 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+\left(9 \times 10^{0}\right)$
$=$ \qquad $+$ \qquad $+$ \qquad
$=$ \qquad
$=$ \qquad
2.3 8. Evaluate.
a) $3^{2}+5=$ \qquad $+5$
$=$ \qquad
b) $5^{2}-2^{3}=$ \qquad -2^{3}

$$
\begin{aligned}
& = \\
& =--2^{3} \\
& =
\end{aligned}
$$

c) $(2+3)^{3}=()^{3}$
$=$
\qquad
d) $2^{3}+(-3)^{3}=$ \qquad $+(-3)^{3}$

$$
=-\quad+(-3)^{3}
$$

$$
=+
$$

\qquad
$=$ \qquad
$=$ \qquad
9. Evaluate.
a) $5 \times 3^{2}=5 \times$ \qquad b) $8^{2} \div 4=\ldots \div 4$
$=$ \qquad $=$ \qquad
c) $(10+2) \div 2^{2}=$ \qquad $\div 2^{2}$
$=$
d) $\left(7^{2}+1\right) \div\left(2^{3}+2\right)$
$=(\square+1) \div$ \qquad +2)
$=-\div$
$=$ \qquad
10. Evaluate. State which operation you do first.
a) $3^{2}+4^{2}$
$=$ \qquad $+$
$=$ \qquad $+$
$=$ \qquad
b) $[(-3)-2]^{3}$ \qquad
$=(-)^{3}$
$=$ \qquad
$=$ \qquad
c) $(-2)^{3}+(-3)^{0}$
$=$ \qquad $+$ \qquad
$=$ \qquad
$=$ \qquad
d) $\left[(6-3)^{3} \times(2+2)^{2}\right]^{0}$
\qquad

2.4 Skill Builder

Simplifying Fractions

To simplify a fraction, divide the numerator and denominator by their common factors.

To simplify $\frac{5 \times 5 \times 5 \times 5}{5 \times 5}$:
This fraction shows repeated multiplication.

Divide the numerator and denominator by their common factors: 5×5.
$\frac{8^{1} \times 8^{1} \times 5 \times 5}{5^{1} \times 8^{1}}$
$=\frac{5 \times 5}{1}$
$=25$

Check

1. Simplify each fraction.
a) $\frac{3] \times 3 \times 3}{B}$
=
$=$
b) $\frac{8 \times 8 \times 8 \times 8 \times 8}{8 \times 8 \times 8 \times 18 \times 18}$
\qquad
c) $\frac{5 \times 5 \times 5 \times 5 \times 5}{5 \times 5 \times 5}$
$=$ \qquad
$=$ \qquad
d) $\frac{2 \times 2 \times 2 \times 2 \times 12 \times 2 \times 2 \times 2}{2 \times 2 \times 2^{2} \times 2 \times 2}$
$=$ \qquad
$=$ \qquad

FOCUS Understand and apply the exponent laws for products

 and quotients of powers.Multiply $3^{2} \times 3^{4}$.
$3^{2} \times 3^{4} \quad$ Write as repeated multiplication.
$=(\underbrace{3 \times(\underbrace{3 \times 3 \times 3 \times 3}_{4 \text { factors of } 3})}_{2 \text { factors of } 3 \times 3}$
$=\underbrace{3 \times 3 \times 3 \times 3 \times 3 \times 3}$
6 factors of 3

So, $3^{2} \times 3^{4}=3^{6} \quad$ Look at the pattern in the exponents.

We write: $3^{2} \times 3^{4}=3^{(2+4)}$

$$
=3^{6}
$$

This relationship is true when you multiply any 2 powers with the same base.

Exponent Law for a Product of Powers

To multiply powers with the same base, add the exponents.

Example 1
 Simplifying Products with the Same Base

Write as a power.
a) $5^{3} \times 5^{4}$
b) $(-6)^{2} \times(-6)^{3}$
c) $\left(7^{2}\right)(7)$

Solution

a) The powers have the same base: 5

Use the exponent law for products: add the exponents.

$$
\begin{aligned}
5^{3} \times 5^{4} & =5^{(3+4)} \\
& =5^{7}
\end{aligned}
$$ you can write the powers as repeated multiplication.

b) The powers have the same base: -6

$$
\begin{aligned}
(-6)^{2} \times(-6)^{3} & =(-6)^{(2+3)} \quad \text { Add the exponents. } \\
& =(-6)^{5}
\end{aligned}
$$

c) $\left(7^{2}\right)(7)=7^{2} \times 7^{1} \quad$ Use the exponent law for products.

$$
\begin{aligned}
& =7^{(2+1)} \\
& =7^{3}
\end{aligned}
$$

Add the exponents. as 7^{1}.

Check

1. Write as a power.
a) $2^{5} \times 2^{4}=2\left({ }^{+}+\quad\right)$ $=2$
b) $5^{2} \times 5^{5}=5$ $=5$
c) $(-3)^{2} \times(-3)^{3}=$ \qquad d) $10^{5} \times 10=$ \qquad

$$
=
$$

\qquad
=
\qquad

Divide $3^{4} \div 3^{2}$.
$3^{4} \div 3^{2}=\frac{3^{4}}{3^{2}}$.
$=\frac{3 \times 3 \times 3 \times 3}{3 \times 3} \quad$ Simplify .
$=\frac{z^{1} \times z^{1} \times 3 \times 3}{z^{1} \times z^{1}}$
$=\frac{3 \times 3}{1}$
$=3 \times 3$
$=3^{2}$
So, $\begin{aligned} 3^{4} \downarrow & \div 3_{\downarrow}^{2} \\ \downarrow & =3_{\downarrow}^{2} \\ \mathbf{4}-\mathbf{2} & =\mathbf{2}\end{aligned}$
Look at the pattern in the exponents.

We write: $3^{4} \div 3^{2}=3^{(4-2)}$

$$
=3^{2}
$$

This relationship is true when you divide any 2 powers with the same base.

To divide powers with the same base, subtract the exponents.

Example 2 ,

Simplifying Quotients with the Same Base

Write as a power.
a) $4^{5} \div 4^{3}$
b) $(-2)^{7} \div(-2)^{2}$

Solution

Use the exponent law for quotients: subtract the exponents.
a) $4^{5} \div 4^{3}=4^{(5-3)}$

$$
=4^{2}
$$

b) $(-2)^{7} \div(-2)^{2}=(-2)^{(7-2)}$

$$
=(-2)^{5}
$$

The powers have the same base: 4
To check your work, you can write the powers as repeated multiplication.

The powers have the same base: -2

Check

1. Write as a power.
a) $(-5)^{6} \div(-5)^{3}=(-5)$ \qquad
\qquad
b) $\frac{(-3)^{9}}{(-3)^{5}}=(-3)$
$=$ \qquad
c) $8^{4} \div 8^{3}=$ \qquad
$\frac{(-3)^{9}}{(-3)^{5}}$ is the same as
$(-3)^{9} \div(-3)^{5}$
$=$ \qquad
d) $9^{8} \div 9^{2}=$ \qquad
$=$ \qquad

Evaluate.
a) $2^{2} \times 2^{3} \div 2^{4}$
b) $(-2)^{5} \div(-2)^{3} \times(-2)$

Solution

a) $2^{2} \times 2^{3} \div 2^{4}$

Add the exponents of the 2 powers that are multiplied.
$=2^{(2+3)} \div 2^{4}$
$=2^{5} \div 2^{4}$
$=2^{(5-4)}$
$=2^{1}$
$=2$
b) $(-2)^{5} \div(-2)^{3} \times(-2) \quad$ Subtract the exponents of the 2 powers that are divided.
$=(-2)^{(5-3)} \times(-2)$
$=(-2)^{2} \times(-2) \quad$ Multiply: add the exponents.
$=(-2)^{(2+1)}$
$=(-2)^{(3)}$
$=(-2)(-2)(-2)$
$=-8$

Check

1. Evaluate.
a) $4 \times 4^{3} \div 4^{2}=4(-+\quad+) \div 4^{2}$
$=4-4^{2}$
$=4\left(-{ }^{-}\right)$
$=4$
\qquad
b) $(-3) \div(-3) \times(-3)$
$=(-3)-\times(-3)$
$=(-3)-\times(-3)$
$=(-3)$
$=(-3)$ -
$=$ \qquad

Practice

1. Write each product as a single power.
a) $\begin{aligned} 7^{6} \times 7^{2} & =7 \frac{4}{4}^{+} \\ & =7 \underline{4}\end{aligned}$
 1
c) $(-2) \times(-2)^{3}=$ \qquad
b) $(-4)^{5} \times(-4)^{3}=(-4)$ $=(-4)$
d) $10^{5} \times 10^{5}=$ \qquad
\qquad
f) $(-3)^{4} \times(-3)^{5}=$ \qquad
$=$ \qquad To multiply powers with the same base, add the exponents.
e) $7^{0} \times 7^{1}=$ \qquad
$=$ \qquad
2. Write each quotient as a power.
a) $(-3)^{5} \div(-3)^{2}=(-3)^{2}$ \qquad $-\quad$ -$=(-3)-$
b) $5^{6} \div 5^{4}=5$ \qquad $=5$
b) $5 \div 5$
c) $\frac{4^{7}}{4^{4}}=4 \square$

$$
=4
$$

d) $\frac{5^{8}}{5^{6}}=$ \qquad

e) $6^{4} \div 6^{4}=$ \qquad
$=$ \qquad
f) $\frac{(-6)^{8}}{(-6)^{7}}=$ \qquad
\qquad
3. Write as a single power.
a) $2^{3} \times 2^{4} \times 2^{5}=2$ $+$ \qquad
$=2-\times 2^{5}$
$=2$
$=2$ $\times 2^{5}$
b) $\frac{3^{2} \times 3^{2}}{3^{2} \times 3^{2}}=\frac{3-}{3}$
$=\frac{3-}{3-}$
Which exponent law should you
= \qquad
\qquad
c) $10^{3} \times 10^{5} \div 10^{2}=$ \qquad $\div 10^{2}$
$=$ \qquad $\div 10^{2}$
= \qquad
$=$ \qquad
d) $(-1)^{9} \div(-1)^{5} \times(-1)^{0}$
$=$ \qquad $\times(-1)^{0}$
$=$ \qquad $\times(-1)^{0}$
$=$ \qquad
= \qquad
4. Simplify, then evaluate.
a) $(-3)^{1} \times(-3)^{2} \times 2$
$=$ \qquad
$=$ \qquad $\times 2$
$=$ \qquad
b) $9^{9} \div 9^{7} \times 9^{0}=$ \qquad $\times 9^{0}$
$=$ \qquad $\times 9^{0}$
\qquad
$=$ \qquad
See if you can use the exponent laws to simplify.
c) $\frac{5^{2}}{5^{0}}=$ \qquad

$$
=
$$

\qquad
$=$ \qquad
d) $\frac{5^{5}}{5^{4}} \times 5=5-\times 5$
$=5-\times 5$
$=5$
$=5$
$=$
5. Identify any errors and correct them.
a) $4^{3} \times 4^{5}=4^{8}$ \qquad
\qquad
b) $2^{5} \times 2^{5}=2^{25}$ \qquad
\qquad
c) $(-3)^{6} \div(-3)^{2}=(-3)^{3}$
d) $7^{0} \times 7^{2}=7^{0}$
\qquad
\qquad
e) $6^{2}+6^{2}=6^{4}$ \qquad
f) $10^{6} \div 10=10^{6}$ \qquad
\qquad
g) $2^{3} \times 5^{2}=10^{5}$ \qquad

2.5 Skill Builder

Grouping Equal Factors

In multiplication, you can group equal factors.

Order does not matter in multiplication.
$3 \times 7 \times 7 \times 3 \times 7 \times 7 \times 3 \quad$ Group equal factors.
$=3 \times 3 \times 3 \times 7 \times 7 \times 7 \times 7$. Write repeated multiplication as powers.
$=3^{3} \times \quad 7^{4}$

Check

1. Group equal factors and write as powers.
a) $2 \times 10 \times 2 \times 10 \times 2=2 \times 2 \times 2 \times$
$=$ \qquad
b) $2 \times 5 \times 2 \times 5 \times 2 \times 5 \times 2 \times 5=$ \qquad
$=$ \qquad

Multiplying Fractions

To multiply fractions, first multiply the numerators, and then multiply the denominators.
$\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3} \quad$ Write repeated multiplication as powers.

$$
=\frac{2^{4}}{3^{4}}
$$

Check

1. Multiply the fractions. Write as powers.
a) $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=$
b) $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
=
$=$ \qquad
$=$
\qquad

2.5 Exponent Laws II

FOCUS Understand and apply exponent laws for powers of: products; quotients; and powers.

Multiply $3^{2} \times 3^{2} \times 3^{2}$.
$3^{2} \times 3^{2} \times 3^{2}=3^{2+2+2}$

$$
=3^{6}
$$

Use the exponent law for the product of powers.
Add the exponents.

We can write repeated multiplication as powers.
So, $\underbrace{3^{2} \times 3^{2} \times 3^{2}}_{3 \text { factors of }\left(3^{2}\right)}$
The base is 3^{2}.

$=\left(3^{2}\right)^{3}$
The exponent is 3 .
$=3^{6}$
This is a power of a power.
Look at the pattern in the exponents.
$2 \times 3=6$
We write: $\left(3^{2}\right)^{3}=3^{2 \times 3}$

$$
=3^{6}
$$

Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents. For example: $\left(2^{3}\right)^{5}=2^{3 \times 5}$

Example 1

Simplifying a Power of a Power

Write as a power.
a) $\left(3^{2}\right)^{4}$
b) $\left[(-5)^{3}\right]^{2}$
c) $-\left(2^{3}\right)^{4}$

Solution

Use the exponent law for a power of a power: multiply the exponents.
a) $\left(3^{2}\right)^{4}=3^{2 \times 4}$

$$
=3^{8}
$$

b) $\left[(-5)^{3}\right]^{2}=(-5)^{3 \times 2} \quad$ The base is -5 .

$$
=(-5)^{6}
$$

c) $-\left(2^{3}\right)^{4}=-\left(2^{3 \times 4}\right) \quad$ The base is 2 .

$$
=-2^{12}
$$

Check

1. Write as a power.
a) $\left(9^{3}\right)^{4}=9-{ }^{x}$ \qquad
b) $\left[(-2)^{5}\right]^{3}=(-2)$ $=(-2)$
c) $-\left(5^{4}\right)^{2}=-(5 \longrightarrow)$
$=-5$

Multiply $(3 \times 4)^{2}$.
Write as repeated multiplication.

$$
\begin{array}{rlrl}
(3 \times 4)^{2} & =(3 \times 4) \times(3 \times 4) & & \text { Remove the brackets. } \\
& =3 \times 4 \times 3 \times 4 & & \text { Group equal factors. } \\
& =(\underbrace{3 \times 3}) \times(\underbrace{4 \times 4}) & \text { Write as powers. } \\
& 2 \text { factors of } 3 \\
& =3^{2} \times 4^{2} & &
\end{array}
$$

The base of the power is a product:

So, $(3 \times 4)^{2}=3^{2} \times 4^{2}$
power product power

Exponent Law for a Power of a Product

The power of a product is the product of powers.
For example: $(2 \times 3)^{4}=2^{4} \times 3^{4}$

Example 2
 Evaluating Powers of Products

Evaluate.
a) $(2 \times 5)^{2}$
b) $[(-3) \times 4]^{2}$

Solution

Use the exponent law for a power of a product.
a) $(2 \times 5)^{2}=2^{2} \times 5^{2}$
$=(2)(2) \times(5)(5)$
$=4 \times 25$
$=100$
b) $[(-3) \times 4]^{2}=(-3)^{2} \times 4^{2}$
$=(-3)(-3) \times(4)(4)$
$=9 \times 16$
$=.144$

Or, use the order of operations and evaluate what is inside the brackets first.
a) $(2 \times 5)^{2}=10^{2}$
$=100$
b) $[(-3) \times 4]^{2}=(-12)^{2}$
$=144$

1. Write as a product of powers.
a) $(5 \times 7)^{4}=$ \qquad \times \qquad b) $(8 \times 2)^{2}=$ \qquad \times \qquad
2. Evaluate.
a) $[(-1) \times 6]^{2}=$ \qquad 2
$=$ \qquad
b) $[(-1) \times(-4)]^{3}=$ \qquad 3
$=$ \qquad

Evaluate $\underbrace{\left(\frac{3}{4}\right)^{2}}_{\text {base }} \quad$ The base of the power is a quotient: $\frac{3}{4}$
Write as repeated multiplication.

$$
\begin{aligned}
\left(\frac{3}{4}\right)^{2} & =\left(\frac{3}{4}\right) \times\left(\frac{3}{4}\right) \\
& =\frac{3}{4} \times \frac{3}{4} \\
& =\frac{3 \times 3}{4 \times 4} \\
& =\frac{3^{2}}{4^{2}}
\end{aligned}
$$

Multiply the fractions.

Write repeated multiplication as powers.

So, $\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}<}$ quotient

Exponent Law for a Power of a Quotient

The power of a quotient is the quotient of powers.
For example: $\left(\frac{2}{3}\right)^{4}=\frac{2^{4}}{3^{4}}$

Example 3

Evaluating Powers of Quotients

Evaluate.
a) $[30 \div(-5)]^{2}$
b) $\left(\frac{20}{4}\right)^{2}$

Solution

Use the exponent law for a power of a quotient.
a) $[30 \div(-5)]^{2}=\left(\frac{30}{-5}\right)^{2}$
b) $\left(\frac{20}{4}\right)^{2}=\frac{20^{2}}{4^{2}}$
$=\frac{30^{2}}{(-5)^{2}}$
$=\frac{400}{16}$
$=\frac{900}{25}$
$=25$
$=36$

Or, use the order of operations and evaluate what is inside the brackets first.
a) $[30 \div(-5)]^{2}=(-6)^{2}$
b) $\left(\frac{20}{4}\right)^{2}=5^{2}$
$=36$
$=25$

Check

1. Write as a quotient of powers.
a) $\left(\frac{3}{4}\right)^{5}=$ \qquad b) $[1 \div(-10)]^{3}=$
2. Evaluate.
a) $[(-16) \div(-4)]^{2}$
b) $\left(\frac{36}{6}\right)^{3}=$ \qquad
$=$ \qquad

You can

 evaluate what is inside the brackets first.
Practice

1. Write as a product of powers.
a) $(5 \times 2)^{4}=5-\times 2-$
b) $(12 \times 13)^{2}=$ \qquad
c) $[3 \times(-2)]^{3}=$ \qquad d) $[(-4) \times(-5)]^{5}=$ \qquad
2. Write as a quotient of powers.
a) $(5 \div 8)^{0}=$
b) $[(-6) \div 5]^{7}=$
c) $\left(\frac{3}{5}\right)^{2}=$ \qquad d) $\left(\frac{-1}{-2}\right)^{3}=$
3. Write as a power.
a) $\left(5^{2}\right)^{3}=5-\times$
b) $\left[(-2)^{3}\right]^{5}=(-2)$
$=5$
$=$ \qquad
c) $\left(4^{4}\right)^{1}=$ \qquad
$=$ \qquad
d) $\left(8^{0}\right)^{3}=$ \qquad
$=$ \qquad
4. Evaluate.
a) $\left[(6 \times(-2)]^{2}=\right.$ \qquad
b) $-(3 \times 4)^{2}=-(\square)$
$=$ \qquad
c) $\left(\frac{-8}{-2}\right)^{2}=$ \qquad d) $(10 \times 3)^{1}=$ \qquad
$=$ \qquad
$=$ \qquad
e) $\left[(-2)^{1}\right]^{2}=$ \qquad
\qquad
f) $\left[(-2)^{1}\right]^{3}=$ \qquad
) $=$ \qquad
$=$ \qquad
5. Find any errors and correct them.
a) $\left(3^{2}\right)^{3}=3^{5}$ \qquad
b) $(3+2)^{2}=3^{2}+2^{2}$ \qquad
c) $\left(5^{3}\right)^{3}=5^{9}$ \qquad
d) $\left(\frac{2}{3}\right)^{8}=\frac{2^{8}}{3^{8}}$ \qquad
e) $(3 \times 2)^{2}=36$ \qquad
\qquad
f) $\left(\frac{2}{3}\right)^{2}=\frac{4}{6}$ \qquad
g) $\left[(-3)^{3}\right]^{0}=(-3)^{3}$ \qquad
\qquad
h) $[(-2) \times(-3)]^{4}=-6^{4}$

Unit 2 Puzzle

Bird's Eye View

This is a view through the eyes of a bird. What does the bird see?

To find out, simplify or evaluate each expression on the left, then find the answer on the right.
Write the corresponding letter beside the question number.
The numbers at the bottom of the page are question numbers.
Write the corresponding letter over each number.

1. $5 \times 5 \times 5 \times 5$ \qquad A 100000
2. 2^{3}
P $\quad 5^{6}$
3. $\frac{3^{6}}{3^{2}}$
\qquad
\qquad S 0
4. $4 \times 4 \times 4 \times 4 \times 4$ \qquad E 1
5. $(-2)^{3}$ \qquad F $\quad 3^{4}$
6. $(-2)+4 \div 2$ \qquad G 6
7. $\left(5^{2}\right)^{3}$
18
8. $3^{2}-2^{3}$
\qquad
9. $10^{2} \times 10^{3}$ \qquad
O 4^{6}
10. $5+3^{0}$ \qquad
$N \quad 4^{5}$
R $\quad 5^{4}$
$11.4^{7} \div 4$ \qquad Y $\quad-8$

$$
\overline{9} \quad \overline{7} \overline{8} \overline{1} \quad \overline{6} \quad \overline{11} \overline{4} \quad \overline{3} \overline{1} \quad \overline{5} \quad \overline{2} \quad \overline{4} \quad \overline{10} \quad \overline{9} \quad \overline{4} \quad \overline{8} \quad \overline{10} \quad \overline{10}
$$

Unit 2 Study Guide

Skill	Description	Example
Evaluate a power with an integer base.	Write the power as repeated multiplication, then evaluate.	$(-2)^{3}=(-2) \times(-2) \times(-2)$ $=-8$
Evaluate a power with an exponent 0.	A power with an integer base and an exponent 0 is equal to 1.	$8^{0}=1$
Use the order of operations to evaluate expressions containing exponents.	Evaluate what is inside the brackets. Evaluate powers. Multiply and divide, in order, from left to right. Add and subtract, in order, from left to right.	$\left(3^{2}+2\right) \times(-5)$ $=(9+2) \times(-5)$ $=(11) \times(-5)$ $=-55$
Apply the exponent law for a product of powers.	To multiply powers with the same base, add the exponents.	$4^{3} \times 4^{6}=4^{3+6}$ $=4^{9}$
Apply the exponent law for a quotient of powers.	To divide powers with the same base, subtract the exponents.	$2^{7} \div 2^{4}=\frac{2^{7}}{2^{4}}$
Apply the exponent law for a power of a power.	To raise a power to a power, multiply the exponents.	$\left(5^{3}\right)^{2}=2^{3} \times 2$ $=5^{6}$
Apply the exponent law for a power of a product.	Write the power of a product as a product of powers.	$(6 \times 3)^{5}=6^{5} \times 3^{5}$
Apply the exponent law for a power of a quotient.	Write the power of a quotient as a quotient of powers.	$\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}$

Unit 2 Review

2.1 1. Give the base and exponent of each power.
a) 6^{2}
Base \qquad Exponent \qquad
b) $(-3)^{8} \quad$ Base \qquad Exponent \qquad
2. Write as a power.
a) $4 \times 4 \times 4=4$
b) $(-3)(-3)(-3)(-3)(-3)=$ \qquad
3. Write each power as repeated multiplication and in standard form.
a) $(-2)^{5}=$ \qquad
$=$ \qquad
b) $10^{4}=$ \qquad $=$ \qquad
c) Six squared $=$ \qquad
$=$ \qquad
\qquad
d) Five cubed $=$ \qquad
$=\quad \because \quad \%$

$$
=
$$

\qquad
2.2 4. Evaluate.
a) $10^{\circ}=$ \qquad b) $(-4)^{0}=$ \qquad
c) $8^{1}=$ \qquad
d) $-4^{0}=$ \qquad
5. Write each number in standard form.
a) 9×10^{3}

$$
\begin{aligned}
& =9 \times \\
& =9 \times \\
& =
\end{aligned}
$$ \times \qquad \times \qquad

\qquad
b) $\left(1 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(5 \times 10^{0}\right)$
$=(1 \times$ \qquad $+(3 \times$ \qquad $)+(5 \times$
\qquad _)

$$
=
$$

\qquad
= \qquad
c) $\left(2 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+\left(9 \times 10^{0}\right)$
$=(2 \times \ldots)+(4 \times \ldots)+(1 \times \ldots)+(9 \times$ \qquad
=
\qquad
d) $\left(5 \times 10^{4}\right)+\left(3 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(2 \times 10^{0}\right)$

$$
=
$$

$$
=
$$

\qquad
= \qquad
|2.3
6. Evaluate.
a) $3^{2}+3$
$=$ \qquad $+3$
\doteq \qquad $+3$
$=$ \qquad
b) $[(-2)+4)]^{3}$
$=$ ${ }^{3}$
$=$ \qquad

$$
=
$$

c) $(20+5) \div 5^{2}=\ldots+5^{2}$
\qquad

$$
\begin{equation*}
= \tag{-6}
\end{equation*}
$$

d) $\left(8^{2}-4\right) \div\left(6^{2}-6\right)$
$=(--4) \div($ \qquad
$=\square \div$
$=$ \qquad
7. Evaluate.
a) $5 \times 3^{2}=5 \times$ \qquad b) $10 \times\left(3^{2}+5^{0}\right)=10 \times$ \qquad $=$

$$
\begin{aligned}
& =10 \times \\
& =
\end{aligned}
$$

c) $(-2)^{3}+(-3)(4)=$ \qquad $+$

$$
=
$$

d) $(-3)+4^{0} \times(-3)=(-3)+$ \qquad
\qquad $\times(-3)$

$$
\begin{aligned}
& =(-3)+ \\
& =
\end{aligned}
$$

a) $6^{3} \times 6^{7}=6^{(}+$ \qquad)

$$
=6
$$

b) $(-4)^{2} \times(-4)^{3}=(-4)$

$$
=(-4)
$$

c) $(-2)^{5} \times(-2)^{4}=(-2)$ \qquad

$$
=(-2)
$$

d) $10^{7} \times 10=$ \qquad
$=$ \qquad
9. Write as a power.
a) $5^{7} \div 5^{3}=5($ -
\qquad b) $\frac{10^{5}}{10^{3}}=$ \qquad

$$
=5
$$

$$
=
$$

\qquad
c) $(-6)^{8} \div(-6)^{2}=$

$$
=
$$

\qquad
d) $\frac{5^{10}}{5^{6}}=$ \qquad
e) $8^{3} \div 8=$ \qquad

$$
=
$$

\qquad
f) $\begin{aligned} & \frac{(-3)^{4}}{(-3)^{0}}= \\ &=\end{aligned}$ \qquad
2.5 10. Write as a power.
a) $\left(5^{3}\right)^{4}=5-\times$ \qquad

$$
=5
$$

b) $\left[(-3)^{2}\right]^{6}=(-3){ }^{x}$ \qquad $=(-3)$
c) $\left(8^{2}\right)^{4}=$ \qquad

$$
=
$$

\qquad
d) $\left[(-5)^{5}\right]^{4}=$ \qquad
$=$ \qquad
11. Write as a product or quotient of powers.
a) $(3 \times 5)^{2}=3-\times 5-$
b) $(2 \times 10)^{5}=$ \qquad
c) $[(-4) \times(-5)]^{3}=$ \qquad d) $\left(\frac{4}{3}\right)^{5}=$ \qquad
e) $(12 \div 10)^{4}=12-\div 10$
f) $[(-7) \div(-9)]^{6}=$ \qquad

